843 resultados para “Hybrid” implementation model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmatic volatiles play a crucial role in volcanism, from magma production at depth to generation of seismic phenomena to control of eruption style. Accordingly, many models of volcano dynamics rely heavily on behavior of such volatiles. Yet measurements of emission rates of volcanic gases have historically been limited, which has restricted model verification to processes on the order of days or longer. UV cameras are a recent advancement in the field of remote sensing of volcanic SO2 emissions. They offer enhanced temporal and spatial resolution over previous measurement techniques, but need development before they can be widely adopted and achieve the promise of integration with other geophysical datasets. Large datasets require a means by which to quickly and efficiently use imagery to calculate emission rates. We present a suite of programs designed to semi-automatically determine emission rates of SO2 from series of UV images. Extraction of high temporal resolution SO2 emission rates via this software facilitates comparison of gas data to geophysical data for the purposes of evaluating models of volcanic activity and has already proven useful at several volcanoes. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system’s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera, help constrain this model. UV camera measurements at Kilauea volcano, Hawaii, in May of 2010 captured two occurrences of lava filling and draining within the summit vent. Accompanying high lava stands were diminished SO2 emission rates, decreased seismic and infrasonic tremor, minor deflation, and slowed lava lake surface velocity. Incorporation of UV camera data into the multi-parameter dataset gives credence to the likelihood of shallow gas accumulation as the cause of such events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementation of effective substance abuse treatment programs in community settings is a high priority. The selection of a proven cost-effective model is a first step; however, difficulty arises when the model is imported into a community setting. The Center on Substance Abuse Treatment selected a brief substance abuse treatment program for adolescents, the MET/CBT-5 program, determined to be the most cost-effective protocol in the Cannabis Youth Treatment trial, for implementation in two cohorts of Effective Adolescent Treatment grantees. A qualitative investigation of the protocol implementation with nine sites in the second cohort chronicled adaptations made by grantees and prospects for sustainability. The study found that agencies introduced adaptations without seeming to be aware of potential effects on validity. In most sites, sessions were lengthened or added to accommodate individual client needs, address barriers to client participation, and provide consistency with current norms of treatment. Implications for fidelity of future implementation projects are addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open Source (OS) community offers numerous eLearning platforms of both types: Learning Management Systems (LMS) and Learning Content Systems (LCS). General purpose OS intermediaries such as SourceForge, ObjectWeb, Apache or specialized intermediaries like CampusSource reduce the cost to locate such eLearning platforms. Still, it is impossible to directly compare the functionalities of those OS software products without performing detailed testing on each product. Some articles available from eLearning Wikipedia show comparisons between eLearning platforms which can help, but at the end they barely serve as documentation which are becoming out of date quickly [1]. The absence of integration activities between OS eLearning platforms - which are sometimes quite similar in terms of functionalities and implementation technologies - is sometimes critical since most of the OS projects possess small financial and human resources. This paper shows a possible solution for these barriers of OS eLearning platforms. We propose the Model Driven Architecture (MDA) concept to capture functionalities and to identify similarities between available OS eLearning platforms. This contribution evolved from a fruitful discussion at the 2nd CampusSource Developer Conference at the University of Muenster (27th August 2004).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article proposes a new focus of research for multimedia conferencing systems which allows a participant to flexibly select another participant or a group for media transmission. For example, in a traditional conference system, participants voices might by default be shared with all others, but one might want to select a subset of the conference members to send his/her media to or receive media from. We review the concept of narrowcasting, a model for limiting such information streams in a multimedia conference, and describe a design to use existing standard protocols (SIP and SDP) for controlling fine-grained narrowcasting sessions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Interruptions are known to have a negative impact on activity performance. Understanding how an interruption contributes to human error is limited because there is not a standard method for analyzing and classifying interruptions. Qualitative data are typically analyzed by either a deductive or an inductive method. Both methods have limitations. In this paper a hybrid method was developed that integrates deductive and inductive methods for the categorization of activities and interruptions recorded during an ethnographic study of physicians and registered nurses in a Level One Trauma Center. Understanding the effects of interruptions is important for designing and evaluating informatics tools in particular and for improving healthcare quality and patient safety in general. Method The hybrid method was developed using a deductive a priori classification framework with the provision of adding new categories discovered inductively in the data. The inductive process utilized line-by-line coding and constant comparison as stated in Grounded Theory. Results The categories of activities and interruptions were organized into a three-tiered hierarchy of activity. Validity and reliability of the categories were tested by categorizing a medical error case external to the study. No new categories of interruptions were identified during analysis of the medical error case. Conclusions Findings from this study provide evidence that the hybrid model of categorization is more complete than either a deductive or an inductive method alone. The hybrid method developed in this study provides the methodical support for understanding, analyzing, and managing interruptions and workflow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Interruptions are known to have a negative impact on activity performance. Understanding how an interruption contributes to human error is limited because there is not a standard method for analyzing and classifying interruptions. Qualitative data are typically analyzed by either a deductive or an inductive method. Both methods have limitations. In this paper, a hybrid method was developed that integrates deductive and inductive methods for the categorization of activities and interruptions recorded during an ethnographic study of physicians and registered nurses in a Level One Trauma Center. Understanding the effects of interruptions is important for designing and evaluating informatics tools in particular as well as improving healthcare quality and patient safety in general. METHOD: The hybrid method was developed using a deductive a priori classification framework with the provision of adding new categories discovered inductively in the data. The inductive process utilized line-by-line coding and constant comparison as stated in Grounded Theory. RESULTS: The categories of activities and interruptions were organized into a three-tiered hierarchy of activity. Validity and reliability of the categories were tested by categorizing a medical error case external to the study. No new categories of interruptions were identified during analysis of the medical error case. CONCLUSIONS: Findings from this study provide evidence that the hybrid model of categorization is more complete than either a deductive or an inductive method alone. The hybrid method developed in this study provides the methodical support for understanding, analyzing, and managing interruptions and workflow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Commercial treatment planning systems employ a variety of dose calculation algorithms to plan and predict the dose distributions a patient receives during external beam radiation therapy. Traditionally, the Radiological Physics Center has relied on measurements to assure that institutions participating in the National Cancer Institute sponsored clinical trials administer radiation in doses that are clinically comparable to those of other participating institutions. To complement the effort of the RPC, an independent dose calculation tool needs to be developed that will enable a generic method to determine patient dose distributions in three dimensions and to perform retrospective analysis of radiation delivered to patients who enrolled in past clinical trials. Methods A multi-source model representing output for Varian 6 MV and 10 MV photon beams was developed and evaluated. The Monte Carlo algorithm, know as the Dose Planning Method (DPM), was used to perform the dose calculations. The dose calculations were compared to measurements made in a water phantom and in anthropomorphic phantoms. Intensity modulated radiation therapy and stereotactic body radiation therapy techniques were used with the anthropomorphic phantoms. Finally, past patient treatment plans were selected and recalculated using DPM and contrasted against a commercial dose calculation algorithm. Results The multi-source model was validated for the Varian 6 MV and 10 MV photon beams. The benchmark evaluations demonstrated the ability of the model to accurately calculate dose for the Varian 6 MV and the Varian 10 MV source models. The patient calculations proved that the model was reproducible in determining dose under similar conditions described by the benchmark tests. Conclusions The dose calculation tool that relied on a multi-source model approach and used the DPM code to calculate dose was developed, validated, and benchmarked for the Varian 6 MV and 10 MV photon beams. Several patient dose distributions were contrasted against a commercial algorithm to provide a proof of principal to use as an application in monitoring clinical trial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.