934 resultados para [alpha]2-macroglobulin-trypsin complex-like substance
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.
Resumo:
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.
Resumo:
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.
Resumo:
TLR2 signaling participates in the pathogenesis of pneumococcal meningitis. In infant rats, the TLR2 agonist Pam(3)CysSK(4) was applied intracisternally (0.5 microg in 10 microl saline) alone or after induction of pneumococcal meningitis to investigate the effect of TLR2 activation on cerebrospinal fluid (CSF) inflammation and hippocampal apoptosis. A dose effect of Pam(3)CysSK(4) on apoptosis was investigated by intracisternal application of 0.5 microg in 10 microl saline and 40 microg in 20 microl saline. Pam(3)CysSK(4) neither induced apoptosis in sham-operated mice nor aggravated apoptosis in acute infection. However, Pam(3)CysSK(4) induced pleocytosis, TNF-alpha and MMP-9 in CSF in sham-infection but not during acute meningitis. We conclude that TLR2 signaling triggered by Pam(3)CysSK(4) at a dosage capable to induce a neuroinflammatory response does not induce hippocampal apoptosis in the infant rat model of experimental pneumococcal meningitis.
Resumo:
Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^
Resumo:
Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^
Resumo:
TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^
Resumo:
Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.
Resumo:
Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF–FGFR complex. In this study, based on an exhaustive analysis of the primary sequences of the FGF family, we determined that the residues that constitute the primary receptor-binding site of FGF-2 are conserved throughout the FGF family, whereas those of the secondary receptor binding site of FGF-2 are not. We propose that the FGF–FGFR interaction mediated by the ‘conserved’ primary site interactions is likely to be similar if not identical for the entire FGF family, whereas the ‘variable’ secondary sites, on both FGF as well as FGFR mediates specificity of a given FGF to a given FGFR isoform. Furthermore, as the pro-inflammatory cytokine interleukin 1 (IL-1) and FGF-2 share the same structural scaffold, we find that the spatial orientation of the primary receptor-binding site of FGF-2 coincides structurally with the IL-1β receptor-binding site when the two molecules are superimposed. The structural similarities between the IL-1 and the FGF system provided a framework to elucidate molecular principles of FGF–FGFR interactions. In the FGF–FGFR model proposed here, the two domains of a single FGFR wrap around a single FGF-2 molecule such that one domain of FGFR binds to the primary receptor-binding site of the FGF molecule, while the second domain of the same FGFR binds to the secondary receptor-binding site of the same FGF molecule. Finally, the proposed model is able to accommodate not only heparin-like glycosaminoglycan (HLGAG) interactions with FGF and FGFR but also FGF dimerization or oligomerization mediated by HLGAG.
Resumo:
Triabin, a 142-residue protein from the saliva of the blood-sucking triatomine bug Triatoma pallidipennis, is a potent and selective thrombin inhibitor. Its stoichiometric complex with bovine α-thrombin was crystallized, and its crystal structure was solved by Patterson search methods and refined at 2.6-Å resolution to an R value of 0.184. The analysis revealed that triabin is a compact one-domain molecule essentially consisting of an eight-stranded β-barrel. The eight strands A to H are arranged in the order A-C-B-D-E-F-G-H, with the first four strands exhibiting a hitherto unobserved up-up-down-down topology. Except for the B-C inversion, the triabin fold exhibits the regular up-and-down topology of lipocalins. In contrast to the typical ligand-binding lipocalins, however, the triabin barrel encloses a hydrophobic core intersected by a unique salt-bridge cluster. Triabin interacts with thrombin exclusively via its fibrinogen-recognition exosite. Surprisingly, most of the interface interactions are hydrophobic. A prominent exception represents thrombin’s Arg-77A side chain, which extends into a hydrophobic triabin pocket forming partially buried salt bridges with Glu-128 and Asp-135 of the inhibitor. The fully accessible active site of thrombin in this complex is in agreement with its retained hydrolytic activity toward small chromogenic substrates. Impairment of thrombin’s fibrinogen converting activity or of its thrombomodulin-mediated protein C activation capacity upon triabin binding is explained by usage of overlapping interaction sites of fibrinogen, thrombomodulin, and triabin on thrombin. These data demonstrate that triabin inhibits thrombin via a novel and unique mechanism that might be of interest in the context of potential therapeutic applications.
Resumo:
The recognition of mycobacterial cell wall components causes macrophages to secrete tumor necrosis factor α (TNF-α) and other cytokines that are essential for the development of a protective inflammatory response. We show that toll-like receptors are required for the induction of TNF-α in macrophages by Mycobacterium tuberculosis. Expression of a dominant negative form of MyD88 (a signaling component required for toll-like receptor signaling) in a mouse macrophage cell line blocks TNF-α production induced by M. tuberculosis. We identify toll-like receptor-2 (TLR2) as the specific toll-like receptor required for this induction by showing that expression of an inhibitory TLR2 (TLR2-P681H) blocks TNF-α production induced by whole M. tuberculosis. Further, we show that TLR2-dependent signaling mediates responses to mycobacterial cell wall fractions enriched for lipoarrabinomannan, mycolylarabinogalactan–peptidoglycan complex, or M. tuberculosis total lipids. Thus, although many mycobacterial cell wall fractions are identified to be inflammatory, all require TLR2 for induction of TNF-α in macrophages. These data suggest that TLR2 is essential for the induction of a protective immune response to mycobacteria.
Resumo:
A requirement for scaffolding complexes containing internalized G protein-coupled receptors and β-arrestins in the activation and subcellular localization of extracellular signal-regulated kinases 1 and 2 (ERK1/2) has recently been proposed. However, the composition of these complexes and the importance of this requirement for function of ERK1/2 appear to differ between receptors. Here we report that substance P (SP) activation of neurokinin-1 receptor (NK1R) stimulates the formation of a scaffolding complex comprising internalized receptor, β-arrestin, src, and ERK1/2 (detected by gel filtration, immunoprecipitation, and immunofluorescence). Inhibition of complex formation, by expression of dominant-negative β-arrestin or a truncated NK1R that fails to interact with β-arrestin, inhibits both SP-stimulated endocytosis of the NK1R and activation of ERK1/2, which is required for the proliferative and antiapoptotic effects of SP. Thus, formation of a β-arrestin-containing complex facilitates the proliferative and antiapoptotic effects of SP, and these effects of SP could be diminished in cells expressing truncated NK1R corresponding to a naturally occurring variant.
Resumo:
Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.