655 resultados para (Polyphenyl)benzene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 alpha,omega-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of alpha,omega-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (Dennis et al., 1982; doi:10.1016/0016-7037(82)90046-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interareal correlation has been carried out; composition of the deposits has been determined; sections recovered by marine drilling have been compared; reconstructed paleogeographic conditions confirm previous views on Jurassic and Cretaceous sedimentation in the area: 1. Determinate changes of continental and shallow marine mainly sandy Middle Jurassic deposits by sandy-clayey marine ones to the north and west occur. This indicates similar direction of clastic material migration and converse direction of Jurassic marine transgressions. 2. Increase of sand contents in the deposits also to the east and to the southeast indicates an important source of clastic material. It can result from incipience and development of the epiplatform orogen of Novaya Zemlya - Pai-Khoi in the Late Triassic - Early Jurassic. 3. Compositional and facial changes as well as changes in thicknesses of some Early Cretaceous lithologic-stratigraphic complexes indicate fast change of terrigenous material transport from the north to the south - south-east in the Late Valanginian - Hauterivian. Besides within the South Barents Sea region up to the Shtokman area there occurs weak variability in lithologic parameters of Neocomian avandeltaic deposits and turbidites composed of clays, claystones, and clayey siltstones. Correlation of drilling sections from the Shtokman area and from the South Basin of the Barents Sea together with paleotectonic analysis result to the conclusion about significant structure-forming movements in the Late Jurassic - Early Neocomian. During this time there occurred maximal growth of the Shtokman structure and likely of many other structures belonging to the South Basin of the Barents Sea.