956 resultados para weak approximation
Resumo:
The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir ́e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir ́e deflectometer coupled to a nuclear emulsion detector.
Resumo:
This paper analyzes the newly institutionalized political system in democratizing Indonesia, with particular reference to the presidential system. Consensus has not yet been reached among scholars on whether the Indonesian president is strong or weak. This paper tries to answer this question by analyzing the legislative and partisan powers of the Indonesian president. It must be acknowledged, however, that these two functions do not on their own explain the strengths and weaknesses of the president. This paper suggests that in order to fully understand the presidential system in Indonesia, we need to take into account not just the president's legislative and partisan powers, but also the legislative process and the characteristics of coalition government.
Resumo:
Se desarrollan varias técnicas basadas en descomposición ortogonal propia (DOP) local y proyección de tipo Galerkin para acelerar la integración numérica de problemas de evolución, de tipo parabólico, no lineales. Las ideas y métodos que se presentan conllevan un nuevo enfoque para la modelización de tipo DOP, que combina intervalos temporales cortos en que se usa un esquema numérico estándard con otros intervalos temporales en que se utilizan los sistemas de tipo Galerkin que resultan de proyectar las ecuaciones de evolución sobre la variedad lineal generada por los modos DOP, obtenidos a partir de instantáneas calculadas en los intervalos donde actúa el código numérico. La variedad DOP se construye completamente en el primer intervalo, pero solamente se actualiza en los demás intervalos según las dinámicas de la solución, aumentando de este modo la eficiencia del modelo de orden reducido resultante. Además, se aprovechan algunas propiedades asociadas a la dependencia débil de los modos DOP tanto en la variable temporal como en los posibles parámetros de que pueda depender el problema. De esta forma, se aumentan la flexibilidad y la eficiencia computacional del proceso. La aplicación de los métodos resultantes es muy prometedora, tanto en la simulación de transitorios en flujos laminares como en la construcción de diagramas de bifurcación en sistemas dependientes de parámetros. Las ideas y los algoritmos desarrollados en la tesis se ilustran en dos problemas test, la ecuación unidimensional compleja de Ginzburg-Landau y el problema bidimensional no estacionario de la cavidad. Abstract Various ideas and methods involving local proper orthogonal decomposition (POD) and Galerkin projection are presented aiming at accelerating the numerical integration of nonlinear time dependent parabolic problems. The proposed methods come from a new approach to the POD-based model reduction procedures, which combines short runs with a given numerical solver and a reduced order model constructed by expanding the solution of the problem into appropriate POD modes, which span a POD manifold, and Galerkin projecting some evolution equations onto that linear manifold. The POD manifold is completely constructed from the outset, but only updated as time proceeds according to the dynamics, which yields an adaptive and flexible procedure. In addition, some properties concerning the weak dependence of the POD modes on time and possible parameters in the problem are exploited in order to increase the flexibility and efficiency of the low dimensional model computation. Application of the developed techniques to the approximation of transients in laminar fluid flows and the simulation of attractors in bifurcation problems shows very promising results. The test problems considered to illustrate the various ideas and check the performance of the algorithms are the onedimensional complex Ginzburg-Landau equation and the two-dimensional unsteady liddriven cavity problem.
Resumo:
We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.
Resumo:
This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.
Resumo:
For centuries, earth has been used as a construction material. Nevertheless, the normative in this matter is very scattered, and the most developed countries, to carry out a construction with this material implies a variety of technical and legal problems. In this paper we review, in an international level, the normative panorama about earth constructions. It analyzes ninety one standards and regulations of countries all around the five continents. These standards represent the state of art that normalizes the earth as a construction material. In this research we analyze the international standards to earth construction, focusing on durability test (spray and drip erosion tests). It analyzes the differences between methods of test. Also we show all results about these tests in two types of compressed earth block.
Resumo:
We introduce a diffusion-based algorithm in which multiple agents cooperate to predict a common and global statevalue function by sharing local estimates and local gradient information among neighbors. Our algorithm is a fully distributed implementation of the gradient temporal difference with linear function approximation, to make it applicable to multiagent settings. Simulations illustrate the benefit of cooperation in learning, as made possible by the proposed algorithm.
Resumo:
El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.
Resumo:
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
Intensity and volume of training in Artisti Gymnastics are increasing as the sooner athlete's age of incorporation creating some disturbance in them.
Resumo:
In weak grids, an important problem with voltage stability and protections coordination of power plants exists. This problem appears because all the generation groups are connected to the same bus bar. As a result, if a fault occurs in any of the generation groups, or in the bus bar that connect them, the system voltage will have large oscillations. Hence, in weak grids the correct adjustment of AVR (Automatic Voltage Regulator) is critical. In this work an experimental study of differents AVR adjustments against fault in weak grids is described.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
La presente Tesis Doctoral aborda la introducción de la Partición de Unidad de Bernstein en la forma débil de Galerkin para la resolución de problemas de condiciones de contorno en el ámbito del análisis estructural. La familia de funciones base de Bernstein conforma un sistema generador del espacio de funciones polinómicas que permite construir aproximaciones numéricas para las que no se requiere la existencia de malla: las funciones de forma, de soporte global, dependen únicamente del orden de aproximación elegido y de la parametrización o mapping del dominio, estando las posiciones nodales implícitamente definidas. El desarrollo de la formulación está precedido por una revisión bibliográfica que, con su punto de partida en el Método de Elementos Finitos, recorre las principales técnicas de resolución sin malla de Ecuaciones Diferenciales en Derivadas Parciales, incluyendo los conocidos como Métodos Meshless y los métodos espectrales. En este contexto, en la Tesis se somete la aproximación Bernstein-Galerkin a validación en tests uni y bidimensionales clásicos de la Mecánica Estructural. Se estudian aspectos de la implementación tales como la consistencia, la capacidad de reproducción, la naturaleza no interpolante en la frontera, el planteamiento con refinamiento h-p o el acoplamiento con otras aproximaciones numéricas. Un bloque importante de la investigación se dedica al análisis de estrategias de optimización computacional, especialmente en lo referente a la reducción del tiempo de máquina asociado a la generación y operación con matrices llenas. Finalmente, se realiza aplicación a dos casos de referencia de estructuras aeronáuticas, el análisis de esfuerzos en un angular de material anisotrópico y la evaluación de factores de intensidad de esfuerzos de la Mecánica de Fractura mediante un modelo con Partición de Unidad de Bernstein acoplada a una malla de elementos finitos. ABSTRACT This Doctoral Thesis deals with the introduction of Bernstein Partition of Unity into Galerkin weak form to solve boundary value problems in the field of structural analysis. The family of Bernstein basis functions constitutes a spanning set of the space of polynomial functions that allows the construction of numerical approximations that do not require the presence of a mesh: the shape functions, which are globally-supported, are determined only by the selected approximation order and the parametrization or mapping of the domain, being the nodal positions implicitly defined. The exposition of the formulation is preceded by a revision of bibliography which begins with the review of the Finite Element Method and covers the main techniques to solve Partial Differential Equations without the use of mesh, including the so-called Meshless Methods and the spectral methods. In this context, in the Thesis the Bernstein-Galerkin approximation is subjected to validation in one- and two-dimensional classic benchmarks of Structural Mechanics. Implementation aspects such as consistency, reproduction capability, non-interpolating nature at boundaries, h-p refinement strategy or coupling with other numerical approximations are studied. An important part of the investigation focuses on the analysis and optimization of computational efficiency, mainly regarding the reduction of the CPU cost associated with the generation and handling of full matrices. Finally, application to two reference cases of aeronautic structures is performed: the stress analysis in an anisotropic angle part and the evaluation of stress intensity factors of Fracture Mechanics by means of a coupled Bernstein Partition of Unity - finite element mesh model.