828 resultados para wavelength-division multiplexing (WDM)
Resumo:
The current study is a longitudinal investigation into changes in the division of household labour across transitions to marriage and parenthood in the UK. Previous research has noted a more traditional division of household labour, with women performing the majority of housework, amongst spouses and couples with children. However, the bulk of this work has been cross-sectional in nature. The few longitudinal studies that have been carried out have been rather ambiguous about the effect of marriage and parenthood on the division of housework. Theoretically, this study draws on gender construction theory. The key premise of this theory is that gender is something that is performed and created in interaction, and, as a result, something fluid and flexible rather than fixed and stable. The idea that couples ‘do gender’ through housework has been a major theoretical breakthrough. Gender-neutral explanations of the division of household labour, positing rational acting individuals, have failed to explicate why women continue to perform an unequal share of housework, regardless of socio-economic status. Contrastingly, gender construction theory situates gender as the key process in dividing household labour. By performing and avoiding certain housework chores, couples fulfill social norms of what it means to be a man and a woman although, given the emphasis on human agency in producing and contesting gender, couples are able to negotiate alternative gender roles which, in turn, feed back into the structure of social norms in an ever-changing societal landscape. This study adds extra depth to the doing gender approach by testing whether or not couples negotiate specific conjugal and parent roles in terms of the division of household labour. Both transitions hypothesise a more traditional division of household labour. Data comes from the British Household Panel Survey, a large, nationally representative quantitative survey that has been carried out annually since 1991. Here, data tracks the same 776 couples at two separate time points – 1996 and 2005. OLS regression is used to test whether or not transitions to marriage and parenthood have a significant impact on the division of household labour whilst controlling for host of relevant socio-economic factors. Results indicate that marriage has no significant effect on how couples partition housework. Those couples making the transition from cohabitation to marriage do not show significant changes in housework arrangements from those couples who remain cohabiting in both waves. On the other hand, becoming parents does lead to a more traditional division of household labour whilst controlling for socio-economic factors which accompany the move to parenthood. There is then some evidence that couples use the site of household labour to ‘do parenthood’ and generate identities which both use and inform socially prescribed notions of what it means to be a mother and a father. Support for socio-economic explanations of the division of household labour was mixed although it remains clear that they, alone, cannot explain how households divide housework.
Resumo:
A new method for producing simultaneous lasing at 10.6 and 38.3 microns in a CO2-N2-CS2 gasdynamic laser is presented. The theoretical analysis predicts small-signal gain values of the order 0.21/m for 10.6-micron lasing in CO2 molecules and 0.085/m for 38.3-micron lasing in CS2 molecules, indicating the possibility of dual wave lasing.
Resumo:
We apply the theta modulation technique to simultaneously multiple image more than one object independently with a Fourier plane sampling type of multiple imaging system. Experimental results of multiple imaging two objects is presented.
Resumo:
We examine institutional work from a discursive perspective and argue that reasonability, the existence of acceptable justifying reasons for beliefs and practices, is a key part of legitimation. Drawing on philosophy of language, we maintain that institutional work takes place in the context of ‘space of reasons’ determined by widely held assumptions about what is reasonable and what is not. We argue that reasonability provides the main contextual constraint of institutional work, its major outcome, and a key trigger for actors to engage in it. We draw on Hilary Putnam’s concept ‘division of linguistic labor’ to highlight the specialized distribution of knowledge and authority in defining valid ways of reasoning. In this view, individuals use institutionalized vocabularies to reason about their choices and understand their context with limited understanding of how and why these structures have become what they are. We highlight the need to understand how professions and other actors establish and maintain the criteria of reasoning in various areas of expertise through discursive institutional work.
Resumo:
The current study is a longitudinal investigation into changes in the division of household labour across transitions to marriage and parenthood in the UK. Previous research has noted a more traditional division of household labour, with women performing the majority of housework, amongst spouses and couples with children. However, the bulk of this work has been cross-sectional in nature. The few longitudinal studies that have been carried out have been rather ambiguous about the effect of marriage and parenthood on the division of housework. Theoretically, this study draws on gender construction theory. The key premise of this theory is that gender is something that is performed and created in interaction, and, as a result, something fluid and flexible rather than fixed and stable. The idea that couples 'do gender' through housework has been a major theoretical breakthrough. Gender-neutral explanations of the division of household labour, positing rational acting individuals, have failed to explicate why women continue to perform an unequal share of housework, regardless of socioeconomic status. Contrastingly, gender construction theory situates gender as the key process in dividing household labour. By performing and avoiding certain housework chores, couples fulfill social norms of what it means to be a man and a woman although, given the emphasis on human agency in producing and contesting gender, couples are able to negotiate alternative gender roles which, in turn, feed back into the structure of social norms in an ever-changing societal landscape. This study adds extra depth to the doing gender approach by testing whether or not couples negotiate specific conjugal and parent roles in terms of the division of household labour. Both transitions hypothesise a more traditional division of household labour. Data comes from the British Household Panel Survey, a large, nationally representative quantitative survey that has been carried out annually since 1991. Here, data tracks the same 776 couples at two separate time points - 1996 and 2005. OLS regression is used to test whether or not transitions to marriage and parenthood have a significant impact on the division of household labour whilst controlling for host of relevant socio-economic factors. Results indicate that marriage has no significant effect on how couples partition housework. Those couples making the transition from cohabitation to marriage do not show significant changes in housework arrangements from those couples who remain cohabiting in both waves. On the other hand, becoming parents does lead to a more traditional division of household labour whilst controlling for socio-economic factors which accompany the move to parenthood. There is then some evidence that couples use the site of household labour to 'do parenthood' and generate identities which both use and inform socially prescribed notions of what it means to be a mother and a father. Support for socio-economic explanations of the division of household labour was mixed although it remains clear that they, alone, cannot explain how households divide housework.
Resumo:
In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.
Resumo:
A two-dimensional numerical model which employs the depth-averaged forms of continuity and momentum equations along with k-e turbulence closure scheme is used to simulate the flow at the open channel divisions. The model is generalised to flows of arbitrary geometries and MacCormack finite volume method is used for solving governing equations. Application of cartesian version of the model to analyse the flow at right-angled junction is presented. The numerical predictions are compared with experimental data of earlier investigators and measurements made as part of the present study. Performance of the model in predicting discharge distribution, surface profiles, separation zone parameters and energy losses is evaluated and discussed in detail. To illustrate the application of the numerical model to analyse the flow in acute angled offtakes and streamlined branch entries, a few computational results are presented.
Resumo:
his paper studies the problem of designing a logical topology over a wavelength-routed all-optical network (AON) physical topology, The physical topology consists of the nodes and fiber links in the network, On an AON physical topology, we can set up lightpaths between pairs of nodes, where a lightpath represents a direct optical connection without any intermediate electronics, The set of lightpaths along with the nodes constitutes the logical topology, For a given network physical topology and traffic pattern (relative traffic distribution among the source-destination pairs), our objective is to design the logical topology and the routing algorithm on that topology so as to minimize the network congestion while constraining the average delay seen by a source-destination pair and the amount of processing required at the nodes (degree of the logical topology), We will see that ignoring the delay constraints can result in fairly convoluted logical topologies with very long delays, On the other hand, in all our examples, imposing it results in a minimal increase in congestion, While the number of wavelengths required to imbed the resulting logical topology on the physical all optical topology is also a constraint in general, we find that in many cases of interest this number can be quite small, We formulate the combined logical topology design and routing problem described above (ignoring the constraint on the number of available wavelengths) as a mixed integer linear programming problem which we then solve for a number of cases of a six-node network, Since this programming problem is computationally intractable for larger networks, we split it into two subproblems: logical topology design, which is computationally hard and will probably require heuristic algorithms, and routing, which can be solved by a linear program, We then compare the performance of several heuristic topology design algorithms (that do take wavelength assignment constraints into account) against that of randomly generated topologies, as well as lower bounds derived in the paper.
Resumo:
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 -> S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 -> S arrest is discussed. (C) 2011 Elsevier Inc. All rights reserved.