999 resultados para water erosion
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
Whole macadamia kernels were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) and ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, re-dried to 1.0-1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Immersion in water had no effect on the quality or shelf life of kernels, as measured by sensory evaluation and analysis of the kernel oil. Immersion in brine and ethanol solutions changed the flavour of kernels, but had no effect on shelf life or kernel oil stability over 12 months storage. Water flotation to separate kernels based on differences in oil content is therefore feasible, but microbiological concerns need to be investigated.
Resumo:
The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is preorganized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.
Resumo:
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie ( humid coastal) and Hungry Hills ( dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely ( dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Background. The incidence of, pulp involvement in patients with excessive wear has not been extensively documented. Methods: Clinical, records of 448 patients with excessive tooth wear were reviewed and 52 cases (11.6 per cent) with near or frank pulp exposures or root canal treatments were found and their numbers and sites were tabulated. Light microscopy of study models was used to determine aetiology at each site of exposure as. attrition, erosion or abrasion, scanning electron microscopy (SEM) was performed on some individual teeth. Results: Forty sites of near exposure and 57 sites of frank exposures or root canal treatments were found, some cases had both types of exposure. The commonest sites exposed by erosion were the palatal surfaces of maxillary, and the incisal surfaces of mandibular anterior teeth. Posterior teeth were not commonly affected. Toothbrush abrasion had exacerbated softie lesions as shown by SEM. Conclusions: Endodontic sequelae were found in 11 per cent of tooth wear patients as late stages of dental erosion. Near and frank exposures of the pulp thus constitute a small but significant, problem for,the Australian dental profession's concern in the of the tooth wear cases.
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to compare the measurement of total body water (TBW) by deuterium ((H2O)-H-2) dilution and bioelectrical impedance analysis (BIA) in patients with cystic fibrosis (CF) and healthy controls. Thirty-six clinically stable patients with CF (age 25.4 +/- 5.6 yrs) and 42 healthy controls (age 25.4 +/- 4.8) were recruited into this study. TBW was measured by (H2O)-H-2 dilution and predicted by BIA in patients and controls. The TBW predicted from BIA was significantly different from TBW as measured using (H2O)-H-2 in patients (P