971 resultados para water analysis
Resumo:
This research identifies factors which influence the consumption of potable water supplied to customers' property. A complete spectrum of the customer base is examined including household, commercial and industrial properties. The research considers information from around the world, particularly demand management and tariff related projects from North America. A device termed the Flow Moderator was developed and proven, with extensive trials, to conserve water at a rate equivalent to 40 litres/property/day whilst maintaining standards-of-service considerably in excess of Regulatory requirements. A detailed appraisal of the Moderator underlines the costs and benefits available to the industry through deliberate application of even mild demand management. More radically the concept of a charging policy utilising the Moderator is developed and appraised. Advantages include the lower costs of conventional fixed-price charging systems coupled with the conservation and equitability aspects associated with metering. Explanatory models were developed linking consumption to a range of variables demonstrated that households served by a communal water service-pipe (known in the UK as a shared supply) are subject to associated restrictions equivalent to -180 litres/property/day. The research confirmed that occupancy levels were a significant predictive element for household, commercial and industrial customers. The occurrence of on-property leakage was also demonstrated to be a significant factor recorded as an event which offers considerable scope for demand management in its own right.
Resumo:
Predicting future need for water resources has traditionally been, at best, a crude mixture of art and science. This has prevented the evaluation of water need from being carried out in either a consistent or comprehensive manner. This inconsistent and somewhat arbitrary approach to water resources planning led to well publicised premature developments in the 1970's and 1980's but privatisation of the Water Industry, including creation of the Office of Water Services and the National Rivers Authority in 1989, turned the tide of resource planning to the point where funding of schemes and their justification by the Regulators could no longer be assumed. Furthermore, considerable areas of uncertainty were beginning to enter the debate and complicate the assessment It was also no longer appropriate to consider that contingencies would continue to lie solely on the demand side of the equation. An inability to calculate the balance between supply and demand may mean an inability to meet standards of service or, arguably worse, an excessive provision of water resources and excessive costs to customers. United Kingdom Water Industry Research limited (UKWlR) Headroom project in 1998 provided a simple methodology for the calculation of planning margins. This methodology, although well received, was not, however, accepted by the Regulators as a tool sufficient to promote resource development. This thesis begins by considering the history of water resource planning in the UK, moving on to discuss events following privatisation of the water industry post·1985. The mid section of the research forms the bulk of original work and provides a scoping exercise which reveals a catalogue of uncertainties prevalent within the supply-demand balance. Each of these uncertainties is considered in terms of materiality, scope, and whether it can be quantified within a risk analysis package. Many of the areas of uncertainty identified would merit further research. A workable, yet robust, methodology for evaluating the balance between water resources and water demands by using a spreadsheet based risk analysis package is presented. The technique involves statistical sampling and simulation such that samples are taken from input distributions on both the supply and demand side of the equation and the imbalance between supply and demand is calculated in the form of an output distribution. The percentiles of the output distribution represent different standards of service to the customer. The model allows dependencies between distributions to be considered, for improved uncertainties to be assessed and for the impact of uncertain solutions to any imbalance to be calculated directly. The method is considered a Significant leap forward in the field of water resource planning.
Resumo:
Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.
Resumo:
A víz- és szennyvíz-szolgáltató vállalatok működési költségeinek jelentős hányadát teszi ki a villamosenergia-költség. Elemzésünk az IBNET (International Benchmarking Network for Water and Sanitation Utilities) adatbázisa alapján vizsgálja a közép-kelet-európai és a FÁK országokban működő víziközművek energiahatékonyságát. Többváltozós statisztikai elemzés segítségével tárjuk fel a különböző működési jellemzők energiahatékonyságot befolyásoló hatását. A Világbank által kezdeményezett IBNET programról bővebb információ a www.ib-net.org oldalon található, angol nyelven.
Resumo:
A Világbank az 1990-es évek végén egy nagyszabású, nemzetközi teljesítmény-értékelési programot indított a víz- és szennyvíz-szolgáltató vállalatok körében. Az International Benchmarking Network for Water and Sanitation Utilities (IBNET) elnevezésű kezdeményezés keretében a szolgáltatók egy szabványosított kérdőíven információt adnak meg működésükről. Az egyedi, cégszintű adatokból egy adatbázis készül, mely lehetővé teszi a vállalatok működésének összehasonlító elemzését, amit teljesítmény-értékelésnek (benchmarking) is szokás nevezni. A programról és eddigi eredményeiről angol nyelvű információ a www.ib-net.org honlapon található. A felmérést eddig több, mint 70 országban végezték el, köztük Magyarországon is. Itthon a REKK kapott megbízást a feladat végrehajtására. Az adatgyűjtésen túl az adatbázisra alapozva Közép és Kelet-Európa országainak víziközmű cégeiről statisztikai elemzést végeztünk az alap adottságok és a költségek összefüggésének feltárására.
Resumo:
Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^