977 resultados para vascular cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the modifications of cytosolic [Ca2+] and the activity of Ca2+ channels in freshly dispersed arterial myocytes to test whether lowering O2 tension (PO2) directly influences Ca2+ homeostasis in these cells. Unclamped cells loaded with fura-2 AM exhibit oscillations of cytosolic Ca2+ whose frequency depends on extracellular Ca2+ influx. Switching from a PO2 of 150 to 20 mmHg leads to a reversible attenuation of the Ca2+ oscillations. In voltage-clamped cells, hypoxia reversibly reduces the influx of Ca2+ through voltage-dependent channels, which can account for the inhibition of the Ca2+ oscillations. Low PO2 selectively inhibits L-type Ca2+ channel activity, whereas the current mediated by T-type channels is unaltered by hypoxia. The effect of low PO2 on the L-type channels is markedly voltage dependent, being more apparent with moderate depolarizations. These findings demonstrate the existence of O2-sensitive, voltage-dependent, Ca2+ channels in vascular smooth muscle that may critically contribute to the local regulation of circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) proliferation is thought to play a major role in vascular restenosis after angioplasty and is a serious complication of the procedure. Developing antisense (AS) oligonucleotides as therapeutics is attractive because of the potentially high specificity of binding to their targets, and several investigators have reported inhibition of SMC proliferation in vitro and in vivo by using AS strategies. We report here the results of our experiments on vascular SMCs using AS oligonucleotides directed toward c-myb and c-myc. We found that significant inhibition of SMC proliferation occurred with these specific AS sequences but that this inhibition was clearly not via a hybridization-dependent AS mechanism. Rather, inhibition was due to the presence of four contiguous guanosine residues in the oligonucleotide sequence. This was demonstrated in vitro in primary cultures of SMCs and in arteries ex vivo. The ex vivo model developed here provides a rapid and effective system in which to screen potential oligonucleotide drugs for restenosis. We have further explored the sequence requirements of this non-AS effect and determined that phosphorothioate oligonucleotides containing at least two sets of three or four consecutive guanosine residues inhibit SMC proliferation in vitro and ex vivo. These results suggest that previous AS data obtained using these and similar, contiguous guanosine-containing AS sequences be reevaluated and that there may be an additional class of nucleic acid compounds that have potential as antirestenosis therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The circulating blood exerts a force on the vascular endothelium, termed fluid shear stress (FSS), which directly impacts numerous vascular endothelial cell (VEC) functions. For example, high rates of linear and undisturbed (i.e. laminar) blood flow maintains a protective and quiescent VEC phenotype. Meanwhile, deviations in blood flow, which can occur at vascular branchpoints and large curvatures, create areas of low, and/or oscillatory FSS, and promote a pro-inflammatory, pro-thrombotic and hyperpermeable phenotype. Indeed, it is known that these areas are prone to the development of atherosclerotic lesions. Herein, we show that cyclic nucleotide phosphodiesterase (PDE) 4D (PDE4D) activity is increased by FSS in human arterial endothelial cells (HAECs) and that this activation regulates the activity of cAMP-effector protein, Exchange Protein-activated by cAMP-1 (EPAC1), in these cells. Importantly, we also show that these events directly and critically impact HAEC responses to FSS, especially when FSS levels are low. Both morphological events induced by FSS, as measured by changes in cell alignment and elongation in the direction of FSS, and the expression of critical FSS-regulated genes, including Krüppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS) and thrombomodlin (TM), are mediated by EPAC1/PDE4D signaling. At a mechanistic level, we show that EPAC1/PDE4D acts through the vascular endothelial-cadherin (VECAD)/ platelet-cell adhesion molecule-1 (PECAM1)/vascular endothelial growth factor receptor 2 (VEGFR2) mechanosensor to activate downstream signaling though Akt. Given the critical role of PDE4D in mediating these effects, we also investigated the impact of various patterns of FSS on the expression of individual PDE genes in HAECs. Notably, PDE2A was significantly upregulated in response to high, laminar FSS, while PDE3A was upregulated under low, oscillatory FSS conditions only. These data may provide novel therapeutic targets to limit FSS-dependent endothelial cell dysfunction (ECD) and atherosclerotic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Editorial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Vascular endothelial growth factor-A (VEGF-A) is crucial to retinal vascular growth, both normal and pathological. VEGF-B, recently characterized, is reported to be expressed in retinal tissues, but the importance of VEGF-B to retinal vascular development remained unknown. The aim of this study was to analyse retinal vascular growth in the Vegfb (-/-) knockout mouse. Methods: Retinal vascular growth was measured in Vegfb (-/-) knockout mice raised under normal conditions, and Vegfb (-/-) knockout mice with an oxygen-induced proliferative retinopathy. Wild type Vegfb (+/+) mice served as controls. Vessels were perfused with ink and retinal flatmounts secondarily labelled with FITC-lectin (BS-1, Griffonia simplicifolia ). Area and diameter of retinal growth and retinal vascular growth were recorded over days 0-20, and capillary density and mean diameter recorded from day 17 pups. Results: A variety of techniques confirmed that Vegfb (+/+) mice expressed VEGF-B and that VEGF-B expression was absent in Vegfb (-/-) mice. Vegfb (-/-) mice raised in room air showed no significant differences from Vegfb (+/+) controls. No differences were found in oxygen-induced retinopathy between Vegfb (-/-) and Vegfb (+/+) pups in either the extent of the initial oxygen-induced ablation, or in the regrowth of retinal vessels or vitreal (neovascular) sprouts; vitreal sprouts are important markers of the abnormal proliferative response, and are maximally expressed on day 17 in this model of oxygen-induced retinopathy. Conclusions: These results indicate that a lack of VEGF-B does not significantly affect development of the retinal vasculature under normal conditions, nor does it appear to affect the proliferative retinal responses seen in oxygen-induced retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to grow artificial blood vessels for autologous transplantation as arterial interposition grafts in a large animal model (dog). Method and results: Tubing up to 250 mm long, either bare or wrapped in biodegradable polyglycolic acid (Dexon) or nonbiodegradable polypropylene (Prolene) mesh, was inserted in the peritoneal or pleural cavity of dogs, using minimally invasive techniques, and tethered at one end to the wall with a loose suture. After 3 weeks the tubes and their tissue capsules were harvested, and the inert tubing was discarded. The wall of living tissue was uniformly 1-1.5 mm thick throughout its length, and consisted of multiple layers of myofibroblasts and matrix overlaid with a single layer of mesothelium. The myofibroblasts stained for a-smooth muscle actin, vimentin, and desmin. The bursting strength of tissue tubes with no biodegradable mesh scaffolds was in excess of 2500 mm Hg, and the suture holding strength was 11.5 N, both similar to that in dog carotid and femoral arteries. Eleven tissue tubes were transplanted as interposition grafts into the femoral artery of the same dog in which they were grown, and were harvested after 3 to 6.5 months. Eight remained patent during this time. At harvest, their lumens were lined with endothelium-like cells, and wall cells stained for alpha-actin, smooth muscle myosin, desmin and smoothelin; there was also a thick adventitia containing vasa vasorum. Conclusion: Peritoneal and pleural cavities of large animals can function as bioreactors to grow myofibroblast tubes for use as autologous vascular grafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation. Conversely, the Rho proteins can have beneficial effects on the vasculature, including the promotion of endothelial repair and the maintenance of SMC differentiation. Further identification of the mechanisms by which these proteins and their effectors act in the vasculature should lead to therapies that specifically target only the adverse effects of Rho signalling. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecules involved in axon guidance have recently also been shown to play a role in blood vessel guidance. To examine whether axon guidance molecules, such as the EphA4 receptor tyrosine kinase, might also play a role in development of the central nervous system (CNS) vasculature and repair following CNS injury, we examined wild-type and EphA4 null mutant (-/-) mice. EphA4-/- mice exhibited an abnormal CNS vascular structure in both the cerebral cortex and the spinal cord, with disorganized branching and a 30% smaller diameter. During development, EphA4 was expressed on endothelial cells. This pattern of expression was not maintained in the adult. After spinal cord injury in wild-type mice, expression of EphA4 was markedly up-regulated on activated astrocytes, many of which were tightly associated with blood vessels. In EphA4-/- spinal cord following injury, astrocytes were not as tightly associated with blood vessels as the wild-type astrocytes. In uninjured EphA4-/- mice, the blood-brain barrier (BBB) appeared normal, but it showed prolonged leakage following spinal cord injury. These results support a role for EphA4 in CNS vascular formation and guidance during development and an additional role in BBB repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass. notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tall and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tall. Imo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.