895 resultados para test retest reliability
Resumo:
A long-standing problem when testing from a deterministic finite state machine is to guarantee full fault coverage even if the faults introduce extra states in the implementations. It is well known that such tests should include the sequences in a traversal set which contains all input sequences of length defined by the number of extra states. This paper suggests the SPY method, which helps reduce the length of tests by distributing sequences of the traversal set and reducing test branching. It is also demonstrated that an additional assumption about the implementation under test relaxes the requirement of the complete traversal set. The results of the experimental comparison of the proposed method with an existing method indicate that the resulting reduction can reach 40%. Experimental results suggest that the additional assumption about the implementation can help in further reducing the test suite length. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Background: The six-minute-walk-test (6MWT) has been increasingly used in cystic fibrosis (CF) patients. However, few studies in children have correlated 6MWT with current parameters used to evaluate CF severity. Moreover, no study transformed the values of distance walked from meters into Z scores to avoid bias like age and gender, which are sources of 6MWT variability. Methods: A cross-sectional descriptive study was performed to analyze the correlations (Spearman) among forced expiratory volume in one second (FEV1), body mass index (BMI), chest radiography (CXR), chest tomography (CT), and 6MWT Z score (Z-6MWT). Clinically stable CF patients, aged 6-21 years, were included. Results: 34 patients, 14F/20M, mean age 12.1 +/- 4.0 years were studied. The mean Z-6MWT was -1.1 +/- 1.106. The following correlations versus Z-6MWT were found: FEV1 (r=0.59, r(2)=0.32, p=0.0002), BMI Z score (r=0.42, r(2)=0.17, p=0.013), CXR (r=0.34, r(2)=0.15, p=0.0472) and CT (r=-0.45, r(2)=0.23, p=0.0073). Conclusions: In conclusion there was a significant, but poor, correlation between the six minute walk test Z score and the cystic fibrosis severity markers currently in use. (C) 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Resumo:
Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.
Resumo:
Abstract Originalsprache (englisch) Visual perception relies on a two-dimensional projection of the viewed scene on the retinas of both eyes. Thus, visual depth has to be reconstructed from a number of different cues that are subsequently integrated to obtain robust depth percepts. Existing models of sensory integration are mainly based on the reliabilities of individual cues and disregard potential cue interactions. In the current study, an extended Bayesian model is proposed that takes into account both cue reliability and consistency. Four experiments were carried out to test this model's predictions. Observers had to judge visual displays of hemi-cylinders with an elliptical cross section, which were constructed to allow for an orthogonal variation of several competing depth cues. In Experiment 1 and 2, observers estimated the cylinder's depth as defined by shading, texture, and motion gradients. The degree of consistency among these cues was systematically varied. It turned out that the extended Bayesian model provided a better fit to the empirical data compared to the traditional model which disregards covariations among cues. To circumvent the potentially problematic assessment of single-cue reliabilities, Experiment 3 used a multiple-observation task, which allowed for estimating perceptual weights from multiple-cue stimuli. Using the same multiple-observation task, the integration of stereoscopic disparity, shading, and texture gradients was examined in Experiment 4. It turned out that less reliable cues were downweighted in the combined percept. Moreover, a specific influence of cue consistency was revealed. Shading and disparity seemed to be processed interactively while other cue combinations could be well described by additive integration rules. These results suggest that cue combination in visual depth perception is highly flexible and depends on single-cue properties as well as on interrelations among cues. The extension of the traditional cue combination model is defended in terms of the necessity for robust perception in ecologically valid environments and the current findings are discussed in the light of emerging computational theories and neuroscientific approaches.
Resumo:
I test di qualifica a vibrazioni vengono usati in fase di progettazione di un componente per verificarne la resistenza meccanica alle sollecitazioni dinamiche (di natura vibratoria) applicate durante la sua vita utile. La durata delle vibrazioni applicate al componente durante la sua vita utile (migliaia di ore) deve essere ridotta al fine di realizzare test fattibili in laboratorio, condotti in genere utilizzando uno shaker elettrodinamico. L’idea è quella di aumentare l’intensità delle vibrazioni riducendone la durata. Esistono diverse procedure di Test Tailoring che tramite un metodo di sintesi definiscono un profilo vibratorio da applicare in laboratorio a partire dalle reali vibrazioni applicate al componente: una delle metodologie più comuni si basa sull’equivalenza del danno a fatica prodotto dalle reali vibrazioni e dalle vibrazioni sintetizzate. Questo approccio è piuttosto diffuso tuttavia all’autore non risulta presente nessun riferimento in letteratura che ne certifichi la validità tramite evidenza sperimentalmente. L’obiettivo dell’attività di ricerca è stato di verificare la validità del metodo tramite una campagna sperimentale condotta su opportuni provini. Il metodo viene inizialmente usato per sintetizzare un profilo vibratorio (random stazionario) avente la stessa durata di un profilo vibratorio non stazionario acquisito in condizioni reali. Il danno a fatica prodotto dalla vibrazione sintetizzata è stato confrontato con quello della vibrazione reale in termini di tempo di rottura dei provini. I risultati mostrano che il danno prodotto dalla vibrazione sintetizzata è sovrastimato, quindi l’equivalenza non è rispettata. Sono stati individuati alcuni punti critici e sono state proposte alcune modifiche al metodo per rendere la teoria più robusta. Il metodo è stato verificato con altri test e i risultati confermano la validità del metodo a condizione che i punti critici individuati siano correttamente analizzati.
Resumo:
Il primo studio ha verificato l'affidabilità del software Polimedicus e gli effetti indotti d'allenamento arobico all’intensità del FatMax. 16 soggetti sovrappeso, di circa 40-55anni, sono stati arruolati e sottoposti a un test incrementale fino a raggiungere un RER di 0,95, e da quel momento il carico è stato aumentato di 1 km/ h ogni minuto fino a esaurimento. Successivamente, è stato verificato se i valori estrapolati dal programma erano quelli che si possono verificare durante a un test a carico costante di 1ora. I soggetti dopo 8 settimane di allenamento hanno fatto un altro test incrementale. Il dati hanno mostrato che Polimedicus non è molto affidabile, soprattutto l'HR. Nel secondo studio è stato sviluppato un nuovo programma, Inca, ed i risultati sono stati confrontati con i dati ottenuti dal primo studio con Polimedicus. I risultati finali hanno mostrato che Inca è più affidabile. Nel terzo studio, abbiamo voluto verificare l'esattezza del calcolo del FatMax con Inca e il test FATmaxwork. 25 soggetti in sovrappeso, tra 40-55 anni, sono stati arruolati e sottoposti al FATmaxwork test. Successivamente, è stato verificato se i valori estrapolati da INCA erano quelli che possono verificarsi durante un carico di prova costante di un'ora. L'analisi ha mostrato una precisione del calcolo della FatMax durante il carico di lavoro. Conclusione: E’ emersa una certa difficoltà nel determinare questo parametro, sia per la variabilità inter-individuale che intra-individuale. In futuro bisognerà migliorare INCA per ottenere protocolli di allenamento ancora più validi.
Resumo:
The aim of this study was to refine a multi-dimensional scale based on physiological and behavioural parameters, known as the post abdominal surgery pain assessment scale (PASPAS), to quantify pain after laparotomy in horses. After a short introduction, eight observers used the scale to assess eight horses at multiple time points after laparotomy. In addition, a single observer was used to test the correlation of each parameter with the total pain index in 34 patients, and the effect of general anaesthesia on PASPAS was investigated in a control group of eight horses. Inter-observer variability was low (coefficient of variation 0.3), which indicated good reliability of PASPAS. The correlation of individual parameters with the total pain index differed between parameters. PASPAS, which was not influenced by general anaesthesia, was a useful tool to evaluate pain in horses after abdominal surgery and may also be useful to investigate analgesic protocols or for teaching purposes.
Resumo:
REASONS FOR PERFORMING STUDY: Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis caused by bites of Culicoides and Simulium species, and improved means of diagnosis are required. OBJECTIVES: The cellular antigen simulation test (CAST) with C. nubeculosus and S. vittatum extracts was assessed in a population of IBH-affected and healthy horses. Variations in test results over a one year period and possible cross-reactivity between different insect extracts was studied. METHODS: A total of 314 mature horses were studied using the CAST. Influence of severity of clinical signs, gender and age were evaluated, and 32 horses were tested repeatedly over one year. The kappa reliability test was used to assess agreement of the test results with different insect extracts. RESULTS: Horses with IBH had significantly higher sLT release than controls with C. nubeculosus and S. vittatum. The highest diagnostic sensitivity and specificity levels were attained when using adult C. nubeculosus extracts with the CAST (78% and 97%, respectively), suggesting that most horses with IBH are sensitised against Culicoides allergens. A proportion of IBH-affected horses was found to be sensitised to allergens of Simulium spp. in addition to those of C. nubeculosus. The CAST with C. nubeculosus had positive and negative predictive values > or = 80% for a true prevalence of IBH of 12-52%. In the follow-up study, the proportion of IBH-affected horses with a positive test result ranged from 90% in November to 68% in March. Severity of clinical signs or age did not influence test results significantly. However, IBH-affected males achieved significantly more positive test results than IBH-affected females. CONCLUSIONS: The CAST with adult C. nubeculosus has high specificity and good sensitivity for diagnosis of IBH. Horses with IBH are mainly sensitised to Culicoides allergens, and some horses are additionally also sensitised to allergens in Simulium spp. POTENTIAL RELEVANCE: The CAST is likely to be a useful test for diagnosis of IBH, even allowing the identification of IBH-affected but asymptomatic horses. This test may also help in further characterisation of allergens involved in this condition.
Resumo:
Lucid dream and nightmare frequencies vary greatly between individuals and to assess these differences reliable instruments are needed. The present study aimed to examine the reliability of eight-point scales for measuring lucid dream and nightmare frequencies. The scales were administered twice (with a four-week interval) to 93 sport students. A re-test reliability for the lucid dream frequency was found r=.89 (p<.001) and for the nightmare frequency r=.75 (p<.001). Both eight-point scales appear to be reliable measures for assessing individual differences in lucid dream and nightmare frequencies.
Resumo:
OBJECTIVES To test the inter-rater reliability of the RoB tool applied to Physical Therapy (PT) trials by comparing ratings from Cochrane review authors with those of blinded external reviewers. METHODS Randomized controlled trials (RCTs) in PT were identified by searching the Cochrane Database of Systematic Reviews for meta-analysis of PT interventions. RoB assessments were conducted independently by 2 reviewers blinded to the RoB ratings reported in the Cochrane reviews. Data on RoB assessments from Cochrane reviews and other characteristics of reviews and trials were extracted. Consensus assessments between the two reviewers were then compared with the RoB ratings from the Cochrane reviews. Agreement between Cochrane and blinded external reviewers was assessed using weighted kappa (κ). RESULTS In total, 109 trials included in 17 Cochrane reviews were assessed. Inter-rater reliability on the overall RoB assessment between Cochrane review authors and blinded external reviewers was poor (κ = 0.02, 95%CI: -0.06, 0.06]). Inter-rater reliability on individual domains of the RoB tool was poor (median κ = 0.19), ranging from κ = -0.04 ("Other bias") to κ = 0.62 ("Sequence generation"). There was also no agreement (κ = -0.29, 95%CI: -0.81, 0.35]) in the overall RoB assessment at the meta-analysis level. CONCLUSIONS Risk of bias assessments of RCTs using the RoB tool are not consistent across different research groups. Poor agreement was not only demonstrated at the trial level but also at the meta-analysis level. Results have implications for decision making since different recommendations can be reached depending on the group analyzing the evidence. Improved guidelines to consistently apply the RoB tool and revisions to the tool for different health areas are needed.
Resumo:
BACKGROUND AND OBJECTIVES Reliability is an essential condition for using quantitative sensory tests (QSTs) in research and clinical practice, but information on reliability in patients with chronic pain is sparse. The aim of this study was to evaluate the reliability of different QST in patients with chronic low back pain. METHODS Eighty-nine patients with chronic low back pain participated in 2 identical experimental sessions, separated by at least 7 days. The following parameters were recorded: pressure pain detection and tolerance thresholds at the toe, electrical pain thresholds to single and repeated stimulation, heat pain detection and tolerance thresholds at the arm and leg, cold pain detection threshold at the arm and leg, and conditioned pain modulation using the cold pressor test.Reliability was analyzed using the coefficient of variation, the coefficient of repeatability, and the intraclass correlation coefficient. It was judged as acceptable or not based primarily on the analysis of the coefficient of repeatability. RESULTS The reliability of most tests was acceptable. Exceptions were cold pain detection thresholds at the leg and arm. CONCLUSIONS Most QST measurements have acceptable reliability in patients with chronic low back pain.
Resumo:
PURPOSE Stress urinary incontinence (SUI) affects women of all ages including young athletes, especially those involved in high-impact sports. To date, hardly any studies are available testing pelvic floor muscles (PFM) during sports activities. The aim of this study was the description and reliability test of six PFM electromyography (EMG) variables during three different running speeds. The secondary objective was to evaluate whether there was a speed-dependent difference between the PFM activity variables. METHODS This trial was designed as an exploratory and reliability study including ten young healthy female subjects to characterize PFM pre-activity and reflex activity during running at 7, 9 and 11 km/h. Six variables for each running speed, averaged over ten steps per subject, were presented descriptively, tested regarding their reliability (Friedman, ICC, SEM, MD) and speed difference (Friedman). RESULTS PFM EMG variables varied between 67.6 and 106.1 %EMG, showed no systematic error and were low for SEM and MD using the single value model. Applying the average model over ten steps, ICC (3,k) were >0.75 and SEM and MD about 50 % lower than for the single value model. Activity was found to be highest in 11 km/h. CONCLUSION EMG variables showed excellent ICC and very low SEM and MD. Further studies should investigate inter-session reliability and PFM reactivity patterns of SUI patients using the average over ten steps for each variable as it showed very high ICC and very low SEM and MD. Subsequently, longer running distances and other high-impact sports disciplines could be studied.
Resumo:
The Surgeon General recommends preschoolers 3-5 years old accumulate 60 minutes of moderate-to-vigorous physical activity (MVPA) per day. However, there is limited data measuring physical activity (PA) and MVPA amongst this population. The purpose of this cross-sectional study is to determine the validity, reliability, and feasibility of using MVP 4 Function Walk4Life digital pedometers (MVP-4) in measuring MVPA among preschoolers using the newly modified direct observational technique, System for Observing Fitness Instruction Time-Preschool Version (SOFIT-P) as the gold standard. An ethnically diverse population of 3-5 year old underserved children were recruited from two Harris County Department of Education (HCDE) Head Start centers. For 2 days at baseline and 2 days at post-test, 75 children enrolled wore MVP-4 pedometers for approximately 6-hours per observation day and were observed using SOFIT-P during predominantly active times. Statistical analyses used Pearson "r" correlation coefficients to determine mean minutes of PA and MVPA, convergent and criterion validity, and reliability. Significance was set at p = <0.05. Feasibility was determined through process evaluation information collected during this study via observations from data collectors and teacher input. Results show mean minutes of PA and MVPA ranged between 30-42 and 11-14 minutes, respectively. Convergent validity comparing BMI percentiles with MVP-4 PA outcomes show no significance at pre-test; however, each measurement at post-test showed significance for MVPA (p = 0.0247, p = 0.0056), respectively. Criterion validity comparing percent MVPA time between SOFIT-P and MVP-4 pedometers was determined; however, results deemed insufficient due to inconsistency in observation times while using the newly developed SOFIT-P. Reliability measures show no significance at pre-test, yet show significant results for all PA outcomes at post-test (p = 0.001, p = 0.001, p = 0.0010, p = 0.003), respectively. Finally, MVP-4 pedometers lacked feasibility due to logistical barriers in design. Researchers feel the significant results at post-test are secondary to increased familiarity and more accurate placement of pedometers across time. Researchers suggest manufacturers of MVP-4 pedometers further modify the instrument for ease of use with this population, following which future studies ought to determine validity using objective measures or all-day direct observation techniques.^
Resumo:
Loneliness is a pervasive, rather common experience in American culture, particularly notable among adolescents. However, the phenomenon is not well documented in the cross-cultural psychiatric literature. For psychiatric epidemiology to encompass a wide array of psychopathologic phenomena, it is important to develop useful measures to characterize and classify both non-clinical and clinical dysfunction in diverse subgroups and cultures.^ The goal of this research was to examine the cross-cultural reliability and construct validity of a scale designed to measure loneliness. The Roberts Loneliness Scale (RLS-8) was administered to 4,060 adolescents ages 10-19 years enrolled in high schools along either side of the Texas-Tamaulipas border region between the U.S. and Mexico. Data collected in 1988 from a study focusing on substance use and psychological distress among adolescents in these regions were used to examine the operating characteristics of the RLS-8. A sample stratified by nationality and language, age, gender, and grade was used for analysis.^ Results indicated that in general the RLS-8 has moderate reliability in the U.S. sample, but not in the Mexican sample. Validity analyses demonstrated that there was evidence for convergent validity of the RLS-8 in the U.S. sample, but none in the Mexican sample. Discriminant validity of the measures in neither sample could be established. Based on the factor structure of the RLS-8, two subscales were created and analyzed for construct validity. Evidence for convergent validity was established for both subscales in both national samples. However, the discriminant validity of the measure remains unsubstantiated in both national samples. Also, the dimensionality of the scale is unresolved.^ One primary goal for future cross-cultural research would be to develop and test better defined culture-specific models of loneliness within the two cultures. From such scientific endeavor, measures of loneliness can be developed or reconstructed to classify the phenomenon in the same manner across cultures. Since estimates of prevalence and incidence are contingent upon reliable and valid screening or diagnostic measures, this objective would serve as an important foundation for future psychiatric epidemiologic inquiry into loneliness. ^
Resumo:
Next to leisure, sport, and household activities, the most common activity resulting in medically consulted injuries and poisonings in the United States is work, with an estimated 4 million workplace related episodes reported in 2008 (U.S. Department of Health and Human Services, 2009). To address the risks inherent to various occupations, risk management programs are typically put in place that include worker training, engineering controls, and personal protective equipment. Recent studies have shown that such interventions alone are insufficient to adequately manage workplace risks, and that the climate in which the workers and safety program exist (known as the "safety climate") is an equally important consideration. The organizational safety climate is so important that many studies have focused on developing means of measuring it in various work settings. While safety climate studies have been reported for several industrial settings, published studies on assessing safety climate in the university work setting are largely absent. Universities are particularly unique workplaces because of the potential exposure to a diversity of agents representing both acute and chronic risks. Universities are also unique because readily detectable health and safety outcomes are relatively rare. The ability to measure safety climate in a work setting with rarely observed systemic outcome measures could serve as a powerful means of measure for the evaluation of safety risk management programs. ^ The goal of this research study was the development of a survey tool to measure safety climate specifically in the university work setting. The use of a standardized tool also allows for comparisons among universities throughout the United States. A specific study objective was accomplished to quantitatively assess safety climate at five universities across the United States. At five universities, 971 participants completed an online questionnaire to measure the safety climate. The average safety climate score across the five universities was 3.92 on a scale of 1 to 5, with 5 indicating very high perceptions of safety at these universities. The two lowest overall dimensions of university safety climate were "acknowledgement of safety performance" and "department and supervisor's safety commitment". The results underscore how the perception of safety climate is significantly influenced at the local level. A second study objective regarding evaluating the reliability and validity of the safety climate questionnaire was accomplished. A third objective fulfilled was to provide executive summaries resulting from the questionnaire to the participating universities' health & safety professionals and collect feedback on usefulness, relevance and perceived accuracy. Overall, the professionals found the survey and results to be very useful, relevant and accurate. Finally, the safety climate questionnaire will be offered to other universities for benchmarking purposes at the annual meeting of a nationally recognized university health and safety organization. The ultimate goal of the project was accomplished and was the creation of a standardized tool that can be used for measuring safety climate in the university work setting and can facilitate meaningful comparisons amongst institutions.^