895 resultados para system performance evaluation
Resumo:
Medium access control (MAC) protocols have a large impact on the achievable system performance for wireless ad hoc networks. Because of the limitations of existing analytical models for ad hoc networks, many researchers have opted to study the impact of MAC protocols via discreteevent simulations. However, as the network scenarios, traffic patterns and physical layer techniques may change significantly, simulation alone is not efficient to get insights into the impacts of MAC protocols on system performance. In this paper, we analyze the performance of IEEE 802.11 distributed coordination function (DCF) in multihop network scenario. We are particularly interested in understanding how physical layer techniques may affect the MAC protocol performance. For this purpose, the features of interference range is studied and taken into account of the analytical model. Simulations with OPNET show the effectiveness of the proposed analytical approach. Copyright 2005 ACM.
Resumo:
In the teletraffic engineering of all the telecommunication networks, parameters characterizing the terminal traffic are used. One of the most important of them is the probability of finding the called (B-terminal) busy. This parameter is studied in some of the first and last papers in Teletraffic Theory. We propose a solution in this topic in the case of (virtual) channel systems, such as PSTN and GSM. We propose a detailed conceptual traffic model and, based on it, an analytical macro-state model of the system in stationary state, with: Bernoulli– Poisson–Pascal input flow; repeated calls; limited number of homogeneous terminals; losses due to abandoned and interrupted dialling, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing and abandoned conversation. Proposed in this paper approach may help in determination of many network traffic characteristics at session level, in performance evaluation of the next generation mobile networks.
Resumo:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems. © 2014 IEEE.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Indicators are widely used by organizations as a way of evaluating, measuring and classifying organizational performance. As part of performance evaluation systems, indicators are often shared or compared across internal sectors or with other organizations. However, indicators can be vague and imprecise, and also can lack semantics, making comparisons with other indicators difficult. Thus, this paper presents a knowledge model based on an ontology that may be used to represent indicators semantically and generically, dealing with the imprecision and vagueness, and thus facilitating better comparison. Semantic technologies are shown to be suitable for this solution, so that it could be able to represent complex data involved in indicators comparison.
Resumo:
We present numerically and experimentally the combined impact of an asymmetric receiver design and a partial 42.7 Gb/s DPSK system. By implementing an optimized bit period delay at the MZI and Asymmetric filtering at the destructive port, system performance can be significantly improved by 1.8 dB for an OSNR of 20 dB. © 2013 IEEE.
Resumo:
Indicators are widely used by organizations as a way of evaluating, measuring and classifying organizational performance. As part of performance evaluation systems, indicators are often shared or compared across internal sectors or with other organizations. However, indicators can be vague and imprecise, and also can lack semantics, making comparisons with other indicators difficult. Thus, this paper presents a knowledge model based on an ontology that may be used to represent indicators semantically and generically, dealing with the imprecision and vagueness, and thus facilitating better comparison. Semantic technologies are shown to be suitable for this solution, so that it could be able to represent complex data involved in indicators comparison.
Resumo:
Data Envelopment Analysis (DEA) is a powerful analytical technique for measuring the relative efficiency of alternatives based on their inputs and outputs. The alternatives can be in the form of countries who attempt to enhance their productivity and environmental efficiencies concurrently. However, when desirable outputs such as productivity increases, undesirable outputs increase as well (e.g. carbon emissions), thus making the performance evaluation questionable. In addition, traditional environmental efficiency has been typically measured by crisp input and output (desirable and undesirable). However, the input and output data, such as CO2 emissions, in real-world evaluation problems are often imprecise or ambiguous. This paper proposes a DEA-based framework where the input and output data are characterized by symmetrical and asymmetrical fuzzy numbers. The proposed method allows the environmental evaluation to be assessed at different levels of certainty. The validity of the proposed model has been tested and its usefulness is illustrated using two numerical examples. An application of energy efficiency among 23 European Union (EU) member countries is further presented to show the applicability and efficacy of the proposed approach under asymmetric fuzzy numbers.
Resumo:
We propose a Wiener-Hammerstein (W-H) channel estimation algorithm for Long-Term Evolution (LTE) systems. The LTE standard provides known data as pilot symbols and exploits them through coherent detection to improve system performance. These drivers are placed in a hybrid way to cover up both time and frequency domain. Our aim is to adapt the W-H equalizer (W-H/E) to LTE standard for compensation of both linear and nonlinear effects induced by power amplifiers and multipath channels. We evaluate the performance of the W-H/E for a Downlink LTE system in terms of BLER, EVM and Throughput versus SNR. Afterwards, we compare the results with a traditional Least-Mean Square (LMS) equalizer. It is shown that W-H/E can significantly reduce both linear and nonlinear distortions compared to LMS and improve LTE Downlink system performance.
Resumo:
IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.
Resumo:
This study has explored the potential for implementing a merit-based public personnel system in The Bahamas, a former British colony in The Commonwealth Caribbean. Specifically, the study evaluated the use of merit-based public personnel management practices in areas of recruitment, selection, promotion, training and employee development and performance evaluation. Driving forces and barriers which impact merit system successes and failures as well as strategies for institutionalizing merit system practices are identified. Finally the study attempted to apply the developmental model created by Klingner (1996) to describe the stage of public personnel management in The Bahamas. The data for the study was collected through in-depth interviews with expert observers. ^
Resumo:
Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^
Resumo:
The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
Since the 1990s, scholars have paid special attention to public management’s role in theory and research under the assumption that effective management is one of the primary means for achieving superior performance. To some extent, this was influenced by popular business writings of the 1980s as well as the reinventing literature of the 1990s. A number of case studies but limited quantitative research papers have been published showing that management matters in the performance of public organizations. ^ My study examined whether or not management capacity increased organizational performance using quantitative techniques. The specific research problem analyzed was whether significant differences existed between high and average performing public housing agencies on select criteria identified in the Government Performance Project (GPP) management capacity model, and whether this model could predict outcome performance measures in a statistically significant manner, while controlling for exogenous influences. My model included two of four GPP management subsystems (human resources and information technology), integration and alignment of subsystems, and an overall managing for results framework. It also included environmental and client control variables that were hypothesized to affect performance independent of management action. ^ Descriptive results of survey responses showed high performing agencies with better scores on most high performance dimensions of individual criteria, suggesting support for the model; however, quantitative analysis found limited statistically significant differences between high and average performers and limited predictive power of the model. My analysis led to the following major conclusions: past performance was the strongest predictor of present performance; high unionization hurt performance; and budget related criterion mattered more for high performance than other model factors. As to the specific research question, management capacity may be necessary but it is not sufficient to increase performance. ^ The research suggested managers may benefit by implementing best practices identified through the GPP model. The usefulness of the model could be improved by adding direct service delivery to the model, which may also improve its predictive power. Finally, there are abundant tested concepts and tools designed to improve system performance that are available for practitioners designed to improve management subsystem support of direct service delivery.^