911 resultados para suspended concrete floors, floor vibration, vibration serviceability
Resumo:
A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.
Resumo:
Self-compacting concrete (SCC) is generally designed with a relatively higher content of finer, which includes cement, and dosage of superplasticizer than the conventional concrete. The design of the current SCC leads to high compressive strength, which is already used in special applications, where the high cost of materials can be tolerated. Using SCC, which eliminates the need for vibration, leads to increased speed of casting and thus reduces labour requirement, energy consumption, construction time, and cost of equipment. In order to obtain and gain maximum benefit from SCC it has to be used for wider applications. The cost of materials will be decreased by reducing the cement content and using a minimum amount of admixtures. This paper reviews statistical models obtained from a factorial design which was carried out to determine the influence of four key parameters on filling ability, passing ability, segregation and compressive strength. These parameters are important for the successful development of medium strength self-compacting concrete (MS-SCC). The parameters considered in the study were the contents of cement and pulverised fuel ash (PFA), water-to-powder ratio (W/P), and dosage of superplasticizer (SP). The responses of the derived statistical models are slump flow, fluidity loss, rheological parameters, Orimet time, V-funnel time, L-box, JRing combined to Orimet, JRing combined to cone, fresh segregation, and compressive strength at 7, 28 and 90 days. The models are valid for mixes made with 0.38 to 0.72 W/P ratio, 60 to 216 kg/m3 of cement content, 183 to 317 kg/m3 of PFA and 0 to 1% of SP, by mass of powder. The utility of such models to optimize concrete mixes to achieve good balance between filling ability, passing ability, segregation, compressive strength, and cost is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mix parameters on slump flow, loss of fluidity, flow resistance, segregation, JRing combined to Orimet, and compressive strength at 7 and 28 days. Cost analysis is carried out to show trade-offs between cost of materials and specified consistency levels and compressive strength at 7 and 28 days that can be used to identify economic mixes. The paper establishes the usefulness of the mathematical models as a tool to facilitate the test protocol required to optimise medium strength SCC.
Resumo:
A nonlinear equation of motion is found for the dimer comprising two charged H2O molecules. The THz dielectric response to nonharmonic vibration of a nonrigid dipole, forming the hydrogen bond (HB), is found in the direction transverse to this bond. An explicit expression is derived for the autocorrelator that governs the spectrum generated by transverse vibration (TV) of such a dipole. This expression is obtained by analytical solution of the truncated set of recurrence equations. The far infrared (FIR) spectra of ice at the temperature - 7 degrees C are calculated. The wideband, in the wavenumber (frequency) v range 0... 100.0 cm(-1), spectra are obtained for liquid water at room temperature and for supercooled water at -5.6 degrees C. All spectra are represented in terms of the complex permittivity epsilon(v) and the absorption coefficient alpha(v). The obtained analytical formula for epsilon comprises the term epsilon(perpendicular to) pertinent to the studied TV mechanism with three additional terms Delta epsilon(q), Delta epsilon(mu), and epsilon(or) arising, respectively, from: elastic harmonic vibration of charged molecules along the H-bond; elastic reorientation of HB permanent dipoles; and rather free libration of permanent dipoles in 'defects' of water/ice structure. The suggested TV-dielectric relaxation mechanism allows us: (a) to remove the THz 'deficit' of loss epsilon" inherent in previous theoretical studies; (b) to explain the THz loss and absorption spectra in supercooled (SC) water; and (c) to describe, in agreement with the experiment, the low- and high-frequency tails of the two bands of ice H2O located in the range 10...300 cm(-1). Specific THz dielectric properties of SC water are ascribed to association of water molecules, revealed in our study by transverse vibration of HB charged molecules. (C) 2006 Published by Elsevier B.V.
Resumo:
Because of the different mix design in comparison with traditional concrete and the absence of vibration, different durability characteristics might be expected for self-compacting concrete. The stateof- the-art report, prepared by RILEM Technical Committee TC 205-DSC focuses on the Durability of SCC, by first gathering the available information concerning pore structure, air-void system and transport mechanisms. The available durability results are studied and summarised keeping in mind the fundamental mechanisms and driving forces. All relevant durability issues are considered, like carbonation, chloride penetration, frost resistance, ASR, sulphate attack, thaumasite formation, fire resistance, etc... It is not the intention to give a review on these durability aspects for concrete in general. The aim however is to point at the specifics related to the use of SCC, e.g. due to the addition of a large amount of limestone filler, etc... This paper summarizes the main conclusions of the State-of-the-Art Report.
Resumo:
Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) as aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase II, which is reported here, investigated concrete paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective, as was the case with concrete building blocks, was to replicate the process used by industry in fabricating concrete paving blocks in the laboratory. The compaction technique used involved vibration and pressure at the same time, i.e. a vibro-compaction technique. An electric hammer used previously for building blocks was not sufficient for adequate compaction of paving blocks. Adequate compaction could only be achieved by using the electric hammer while the specimens were on a vibrating table. The experimental work involved two main series of tests, i.e. paving blocks made with concrete- and masonry-derived aggregate. Variables that were investigated were level of replacement of (a) coarse aggregate only, (b) fine aggregate only, and (c) both coarse and fine aggregate. Investigation of mechanical properties, i.e. compressive and tensile splitting strength, of paving blocks made with recycled demolition aggregate determined levels of replacement which produced similar mechanical properties to paving blocks made with newly quarried aggregates. This had to be achieved without an increase in the cement content. The results from this research programme indicate that recycled demolition aggregate can be used for this new higher value market and therefore may encourage demolition contractors to develop crushing and screening facilities for this. (C) 2011 Published by Elsevier Ltd.
Resumo:
Eighteen participants (22-43 years) were randomly allocated to one of two groups: resistance training combined with vibration (VIB; five males, four females) or resistance training alone (CON; five males, four females). Each participant trained three sessions per week (three sets of 10 seated calf raises against a load, which was increased progressively from 75% of one repetition maximum (1RM) to 90% 1RM for 4 weeks. For the VIB group, a vibratory stimulus (30 Hz, 2.5 mm amplitude) was applied to the soles of the feet by a vibration platform. The two groups did not differ significantly with respect to the total amount of work performed during training. Both groups showed a significant increase in maximum voluntary contraction and 1RM (P
Resumo:
Utilising cameras as a means to survey the surrounding environment is becoming increasingly popular in a number of different research areas and applications. Central to using camera sensors as input to a vision system, is the need to be able to manipulate and process the information captured in these images. One such application, is the use of cameras to monitor the quality of airport landing lighting at aerodromes where a camera is placed inside an aircraft and used to record images of the lighting pattern during the landing phase of a flight. The images are processed to determine a performance metric. This requires the development of custom software for the localisation and identification of luminaires within the image data. However, because of the necessity to keep airport operations functioning as efficiently as possible, it is difficult to collect enough image data to develop, test and validate any developed software. In this paper, we present a technique to model a virtual landing lighting pattern. A mathematical model is postulated which represents the glide path of the aircraft including random deviations from the expected path. A morphological method has been developed to localise and track the luminaires under different operating conditions. © 2011 IEEE.