921 resultados para surface-enhanced infrared absorption
Resumo:
A Espectroscopia Raman Intensificada pela Superfície (SERS) é um efeito de intensificação da intensidade Raman de uma molécula adsorvida numa superfície metálica nanoestruturada. Esta característica permite a utilização do SERS na caracterização vibracional de sistemas como junções moleculares (JM) (JM são sistemas constituídos de fios moleculares sintetizados em junções do tipo metal|fiomolecular|metal) e, no entendimento de quais características morfológicas de agregados metálicos mais influenciariam no sinal SERS obtido. Portanto, esta tese apresenta os seguintes objetivos: (a) síntese e caracterização de substratos SERS ativos, nanoesferas (AuNE) e nanobastões (AuNB) de ouro e eletrodo de ouro ativado eletroquimicamente; (b) síntese e caracterização SERS de fios moleculares em JM; (c) estudo do acoplamento plasmônico entre as superfícies metálicas em JM; (d) correlação entre SERS - morfologia de agregados individuais de AuNB. Os fios moleculares estudados foram os da família das oligofeniliminas (OPI) e, no melhor do nosso entendimento, esta foi a primeira vez que fios moleculares desta família foram caracterizados por Raman e SERS. As JM apresentaram um comportamento SERS não esperado. Enquanto para o modo vibracional, v(CS), a intensidade da banda se apresentou constante com o aumento do espaçamento entre as nanoestruturas metálicas (para distâncias de até 5 nm), o modo vibracional, β(CH), teve a intensidade de sua banda aumentada. Este comportamento foi explicado considerando a diferente natureza da interação dos plasmons nas JM, sendo estas interações do tipo, ressonância de plasmon de superfície (LSPR) - dipolo imagem, para ambos os modos. No entanto, para o modo β(CH) existe também uma intensificação extra devido ao aumento da polarizabilidade dos fios moleculares com o aumento do número de unidades. A correlação SERS - morfologia dos agregados de AuNB indicam que, para agregados onde predominam interações ponta a ponta, os espectros SERS apresentavam uma maior intensidade quando comparados com aqueles em que interações lado a lado predominavam. No entanto, este comportamento não foi observado para agregados contendo mais do que cinco nanopartículas onde estes dois tipos de interações ocorrem indicando que deve existir um acoplamento dos plasmons destes dois tipos de interações contribuindo para maiores valores de intensidade SERS.
Resumo:
The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.
Resumo:
Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.
Resumo:
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
A novel laser electrodispersion (LE) technique was employed to deposit gold nanoparticles onto Si and SiOx surfaces. The LE technique combines laser ablation with cascade fission of liquid metal micro-drops, which results in the formation of nanoparticles upon rapid cooling. The shape and the size distribution of the Au nanoparticles prepared by LE depend on the nature of the support. Gold nanoparticles were also deposited in the channels of microreactors fabricated by wet etching of Si and used as SE(R)RS sensors. The influence of the nanoparticle surface density as well as of the nature of the substrate on the Raman response was studied. At an appropriate surface density of the deposited nanoparticles a significant enhancement of Raman signal was observed showing the possibility to create efficient SERS substrates. Application of microfluidic devices in surface enhanced Raman spectroscopy (SERS) in continuous-flow mode with sensor regeneration is described. © 2011 The Royal Society of Chemistry.
Resumo:
We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.
Resumo:
In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.
Resumo:
Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.
The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.
The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.
Resumo:
Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.
Resumo:
Highly swellable polymer films doped with Ag nanoparticle aggregates (poly-SERS films) have been used to record very high signal:noise ratio, reproducible surface-enhanced (resonance) Raman (SER(R)S) spectra of in situ dried ink lines and their constituent dyes using both 633 and 785 nm excitation. These allowed the chemical origins of differences in the SERRS spectra of different inks to be determined. Initial investigation of pure samples of the 10 most common blue dyes showed that the dyes which had very similar chemical structures such as Patent Blue V and Patent Blue VF (which differ only by a single OH group) gave SERRS spectra in which the only indications that the dye structure had been changed were small differences in peak positions or relative intensities of the bands. SERRS studies of 13 gel pen inks were consistent with this observation. In some cases inks from different types of pens could be distinguished even though they were dominated by a single dye such as Victoria Blue B (Zebra Surari) or Victoria Blue BO (Pilot Acroball) because their predominant dye did not appear in other inks. Conversely, identical spectra were also recorded from different types of pens (Pilot G7, Zebra Z-grip) because they all had the same dominant Brilliant Blue G dye. Finally, some of the inks contained mixtures of dyes which could be separated by TLC and removed from the plate before being analysed with the same poly-SERS films. For example, the Pentel EnerGel ink pen was found to give TLC spots corresponding to Erioglaucine and Brilliant Blue G. Overall, this study has shown that the spectral differences between different inks which are based on chemically similar, but nonetheless distinct dyes, are extremely small, so very close matches between SERRS spectra are required for confident identification. Poly-SERS substrates can routinely provide the very stringent reproducibility and sensitivity levels required. This, coupled with the awareness of the reasons underlying the observed differences between similarly coloured inks allows a more confident assessment of the evidential value of inks SERS and should underpin adoption of this approach as a routine method for the forensic examination of inks.
Resumo:
Surface-enhanced Raman measurements of <1 μL analyte/colloid meso-droplets on superhydrophobic wires with hydrophilic tips allowed dipicolinic acid, a spore biomarker for Bacillus anthracis (anthrax), to be detected at 10(-6) mol dm(-3). This is equivalent to 18 spores, significantly below the infective dose of 10(4) spores and 2 orders of magnitude better than previous measurements.
Resumo:
The present invention relates to a logic gate, comprising a metamaterial surface enhanced Raman scattering (MetaSERS) sensor, comprising (a) alphabetical metamaterials in the form of split ring resonators operating in the wavelength range of from 560 to 2200 nm; and (b) a guanine (G) and thymine (T)-rich oligonucleotide that can, upon presence of potassium cations (K+), fold into a G-quadruplex structure, and in presence of Hg2+, form a T-Hg2+-T hairpin complex that inhibits or disrupts the G-quadruplex structure formed in presence of K+, as well as methods of operating and using such a logic gate.
Resumo:
Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.
Resumo:
The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].
Resumo:
A computational methodology for designing ionic liquids (ILs) with an enhanced water absorption capacity to be used in absorption-refrigeration systems is presented here. It is based on increasing the hydrogen bond (HB)-acceptor ability of the anion and combining it with a cation that presents a weak cation-anion interaction. Employing this strategy, we identified and prepared three novel dianionic ILs with an enhanced water absorption capacity, larger than LiBr.