745 resultados para sports medicine
Resumo:
Background Autologous chondrocyte implantation is a cell therapeutic approach for the treatment of chondral and osteochondral defects in the knee joint. The authors previously reported on the histologic and radiologic outcome of autologous chondrocyte implantation in the short- to midterm, which yields mixed results. Purpose The objective is to report on the clinical outcome of autologous chondrocyte implantation for the knee in the midterm to long term. Study Design Cohort study; Level of evidence, 3. Methods Eighty patients who had undergone autologous chondrocyte implantation of the knee with mid- to long-term follow-up were analyzed. The mean patient age was 34.6 years (standard deviation, 9.1 years), with 63 men and 17 women. Seventy-one patients presented with a focal chondral defect, with a median defect area of 4.1 cm2 and a maximum defect area of 20 cm2. The modified Lysholm score was used as a self-reporting clinical outcome measure to determine the following: (1) What is the typical pattern over time of clinical outcome after autologous chondrocyte implantation; and (2) Which patient-related predictors for the clinical outcome pattern can be used to improve patient selection for autologous chondrocyte implantation? Results The average follow-up time was 5 years (range, 2.7–9.3). Improvement in clinical outcome was found in 65 patients (81%), while 15 patients (19%) showed a decline in outcome. The median preoperative Lysholm score of 54 increased to a median of 78 points. The most rapid improvement in Lysholm score was over the 15-month period after operation, after which the Lysholm score remained constant for up to 9 years. The authors were unable to identify any patient-specific factors (ie, age, gender, defect size, defect location, number of previous operations, preoperative Lysholm score) that could predict the change in clinical outcome in the first 15 months. Conclusion Autologous chondrocyte implantation seems to provide a durable clinical outcome in those patients demonstrating success at 15 months after operation. Comparisons between other outcome measures of autologous chondrocyte implantation should be focused on the clinical status at 15 months after surgery. The patient-reported clinical outcome at 15 months is a major predictor of the mid- to long-term success of autologous chondrocyte implantation.
Resumo:
Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.
Resumo:
La especialidad de fisioterapia y rehabilitación veterinaria ha adquirido una importancia creciente experimentando un constante desarrollo en las últimas décadas. Prueba de ello es la aparición de varios cursos de postgrado en diferentes universidades veterinarias o la creación del American College of Veterinary Sports Medicine and Rehabilitation en 2010. En términos generales, esta especialidad se ha nutrido de los protocolos de medicina humana sin existir una base científica sólida, por lo que las publicaciones científicas en el campo veterinario, aunque han ido incrementando recientemente, son aún escasas. Por lo tanto, son necesarios estudios que exploren tratamientos, protocolos y métodos de valoración funcional en veterinaria. En la clínica equina, la fisioterapia se ha centrado en gran medida en la rehabilitación de lesiones musculoesqueléticas, donde los problemas de dorso son una de las principales causas de disminución del rendimiento en caballos de deporte. Su etiología suele ser multifactorial y su presentación hace difícil un diagnóstico claro. Basándonos en el modelo de medicina humana, donde se ha demostrado el papel vital que juega la musculatura multífida en la estabilidad dinámica de la columna y en el desarrollo de patologías, se han comenzado a describir diferentes programas de ejercicios en caballos con el objetivo de mejorar la estabilidad y el control motor del raquis. Aunque algunos han demostrado ser efectivos, aún se necesitan muchos estudios que pongan de manifiesto la aplicación clínica de estos protocolos y su metodología exacta de aplicación en medicina equina...
Resumo:
BACKGROUND:
Acute ankle sprains are usually managed functionally, with advice to undertake progressive weight-bearing and walking. Mechanical loading is an important modular of tissue repair; therefore, the clinical effectiveness of walking after ankle sprain may be dose dependent. The intensity, magnitude and duration of load associated with current functional treatments for ankle sprain are unclear.
AIM:
To describe physical activity (PA) in the first week after ankle sprain and to compare results with a healthy control group.
METHODS:
Participants (16-65 years) with an acute ankle sprain were randomised into two groups (standard or exercise). Both groups were advised to apply ice and compression, and walk within the limits of pain. The exercise group undertook additional therapeutic exercises. PA was measured using an activPAL accelerometer, worn for 7 days after injury. Comparisons were made with a non-injured control group.
RESULTS:
The standard group were significantly less active (1.2 ± 0.4 h activity/day; 5621 ± 2294 steps/day) than the exercise (1.7 ± 0 .7 h/day, p=0.04; 7886 ± 3075 steps/day, p=0.03) and non-injured control groups (1.7 ± 0.4 h/day, p=0.02; 8844 ± 2185 steps/day, p=0.002). Also, compared with the non-injured control group, the standard and exercise groups spent less time in moderate (38.3 ± 12.7 min/day vs 14.5 ± 11.4 min/day, p=0.001 and 22.5 ± 15.9 min/day, p=0.003) and high-intensity activity (4.1 ± 6.9 min/day vs 0.1 ± 0.1 min/day, p=0.001 and 0.62 ± 1.0 min/day p=0.005).
CONCLUSION:
PA patterns are reduced in the first week after ankle sprain, which is partly ameliorated with addition of therapeutic exercises. This study represents the first step towards developing evidence-based walking prescription after acute ankle sprain.