954 resultados para spleen cells proliferation
Resumo:
PURPOSE: To determine whether syngeneic retinal cells injected in the vitreous cavity of the rat are able to initiate a proliferative process and whether the ocular inflammation induced in rats by lipopolysaccharide (LPS) promotes this proliferative vitreoretinopathy (PVR). METHODS: Primary cultured differentiated retinal Müller glial (RMG) and retinal pigmented epithelial (RPE) cells isolated from 8 to 12 postnatal Lewis rats were injected into the vitreous cavity of 8- to 10-week-old Lewis rats (10(5) cells/eye in 2 microlieter sterile saline), with or without the systemic injection of 150 microgram LPS to cause endotoxin-induced uveitis (EIU). Control groups received an intravitreal injection of 2 microliter saline. At 5, 15, and 28 days after cell injections, PVR was clinically quantified, and immunohistochemistry for OX42, ED1, vimentin (VIM), glial fibrillary acidic protein (GFAP), and cytokeratin was performed. RESULTS: The injection of RMG cells, alone or in combination with RPE cells, induced the preretinal proliferation of a GFAP-positive tissue, that was enhanced by the systemic injection of LPS. Indeed, when EIU was induced at the time of RMG cell injection into the vitreous cavity, the proliferation led to retinal folds and localized tractional detachments. In contrast, PVR enhanced the infiltration of inflammatory cells in the anterior segment of the eye. CONCLUSIONS: In the rat, syngeneic retinal cells of glial origin induce PVR that is enhanced by the coinduction of EIU. In return, vitreoretinal glial proliferation enhanced the intensity and duration of EIU.
Resumo:
T cell recognition of antigens displayed on the surface of antigen presenting cell results in rapid activation of protein tyrosine kinases and kinase C. This process leads to second messengers, such as inositol phosphates and diacylgycerol, and phosphorylation of multiple proteins. The role of different protein kinases in the activation of peripheral blood mononuclear cells (PBMC) from Schistosoma mansoni infected individuals was evaluated using genistein and H-7, specific inhibitors of protein tyrosine kinase and kinase C, respectively. Our results showed that proliferation in response to soluble egg antigen or adult worm antigen preparation of S. mansoni was reduced when PBMC were cultured in presence of protein kinase inhibitors. Using these inhibitors on in vitro granuloma reaction, we also observed a marked reduction of granuloma index. Taken together, our results suggest that S. mansoni antigen activation of PBMC involves protein kinases activity
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
Dendritic cells (DCs) serve as a link between the innate and adaptive immune systems. The activation state of DCs is crucial in this role. However, when DCs are isolated from lymphoid tissues, purified and placed in culture they undergo 'spontaneous' activation. The basis of this was explored, using up-regulation of DC surface MHC II, CD40, CD80 and CD86 as indicators of DC activation. No evidence was found for DC damage during isolation or for microbial products causing the activation. The culture activation of spleen DCs differed from that of Langerhans cells when released from E-cadherin-mediated adhesions, since E-cadherin was not detected and activation still occurred with β-catenin null DCs. Much of the activation could be attributed to DC-DC interactions. Although increases in surface MHC II levels occurred under all culture conditions tested, the increase in expression of CD40, CD80 and CD86 was much less under culture conditions where such interactions were minimised. DC-to-DC contact under the artificial conditions of high DC concentration in culture induced the production of soluble factors and these, in turn, induced the up-regulation of co-stimulatory molecules on the DC surface.
Resumo:
Ten oxidosqualene cyclase inhibitors with high efficacy as cholesterol-lowering agents and of different chemical structure classes were evaluated as potential anticancer agents against human cancer cells from various tissue origins and nontumoral human-brain-derived endothelial cells. Inhibition of cancer cell growth was demonstrated at micromolar concentrations, comparable to the concentrations of statins necessary for antitumor effect. Human glioblastoma cells were among the most sensitive cells. These compounds were also able to decrease the proliferation of angiogenic brain-derived endothelial cells, as a model of tumor-induced neovasculation. Additive effects in human glioblastoma cells were also demonstrated for oxidosqualene cyclase inhibitors in combination with atorvastatin while maintaining selectivity against endothelial cells. Thus, not only statins targeting the 3-hydroxy-3-methylglutaryl coenzyme A reductase but also inhibitors of oxidosqualene cyclase decrease tumor growth, suggesting new therapeutic opportunities of combined anti-cholesterol agents for dual treatment of glioblastoma.
Resumo:
Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.
Resumo:
A woman's risk of breast cancer is strongly affected by her reproductive history. The hormonal milieu is also a key determinant of the course of the disease. Combining mouse genetics with tissue recombination techniques, we have established that the female reproductive hormones, estrogens, progesterone, and prolactin, act sequentially on the mammary epithelium to trigger distinct developmental steps. The hormones impinge directly on a subset of luminal mammary epithelial cells that express the respective hormone receptors and act as sensor cells translating and amplifying systemic signals into local stimuli. Local signaling is stage and age specific. During puberty, estrogens promote proliferation using the EGF family member, amphiregulin, as essential paracrine mediator. In adulthood, progesterone, rather than estrogen, is the major inducer of stem cell activation and cell proliferation of the mammary epithelium. Hormonal signaling modulates crucial developmental pathways that impinge on mammary stem cell populations, while Notch signaling, by inhibiting p63, is central to mammary cell fate determination. Cell proliferation occurs in two waves. The first results from direct stimulation of the small fraction of hormone receptor positive cells. It is followed by a second wave of progesterone-induced proliferation involving mostly hormone receptor negative cells, in which RANKL is a key mediator. A model in which repeated activation of paracrine signaling by progesterone with resulting stem cell activation promotes breast carcinogenesis is proposed.
Resumo:
In contrast to other cell cycle inhibitors, the tumor suppressor p16Ink4a is not detectable or expressed at very low levels in embryonic and adult mouse tissues, and therefore it has often been considered as a specialized checkpoint protein that does not participate in the control of normal cell cycle progression. However, Ink4a-/- mice possess increased thymus size and cellularity, thus suggesting the involvement of p16(Ink4a) in the control of thymocyte proliferation. In this study, we found increased numbers of CD8 and CD4 T lymphocytes in thymus and spleen from Ink4a-/- mice. Unexpectedly, this was not related to an increase in T-cell division rates, which were similar in lymphoid organs of Ink4a-/- and wild-type mice. In contrast, T-cell apoptosis rates were significantly decreased in thymus and spleen from Ink4a-/- mice. Moreover, whereas p16Ink4a-deficient and wild-type T cells were equally sensitive to Fas or TCR-mediated apoptosis, the former were clearly more resistant to apoptosis induced by oxidative stress or gamma irradiation. Our results indicate that p16Ink4a function is associated with T-cell apoptosis, and subsequently contributes to the control of T-cell population size in lymphoid organs.
Resumo:
Recirculating virgin CD4+ T cells spend their life migrating between the T zones of secondary lymphoid tissues where they screen the surface of interdigitating dendritic cells. T-cell priming starts when processed peptides or superantigen associated with class II MHC molecules are recognised. Those primed T cells that remain within the lymphoid tissue move to the outer T zone, where they interact with B cells that have taken up and processed antigen. Cognate interaction between these cells initiates immunoglobulin (Ig) class switch-recombination and proliferation of both B and T cells; much of this growth occurs outside the T zones B cells migrate to follicles, where they form germinal centres, and to extrafollicular sites of B-cell growth, where they differentiate into mainly short-lived plasma cells. T cells do not move to the extrafollicular foci, but to the follicles; there they proliferate and are subsequently involved in the selection of B cells that have mutated their Ig variable-region genes. During primary antibody responses T-cell proliferation in follicles produces many times the peak number of T cells found in that site: a substantial proportion of the CD4+ memory T-cell pool may originate from growth in follicles.
Resumo:
Three hundred and thirteen extracts from 136 Brazilian plant species belonging to 36 families were tested for their suppressive activity on phytohemaglutinin (PHA) stimulated proliferation of human peripheral blood mononuclear cells (PBMC). The proliferation was evaluated by the amount of [³H]-thymidine incorporated by the cells. Twenty extracts inhibited or strongly reduced the proliferation in a dose-dependent manner at doses between 10 and 100 µg/ml. Three of these extracts appeared to be non-toxic to lymphocytes, according to the trypan blue permeability assay and visual inspection using optical microscopy. Bioassay-guided fractionation of Alomia myriadenia extract showed that myriadenolide, a labdane diterpene known to occur in this species, could account for the observed activity of the crude extract. Using a similar protocol, an active fraction of the extract from Gaylussacia brasiliensis was obtained. Analysis of the ¹H and13C NMR spectra of this fraction indicates the presence of an acetylated triterpene whose characterization is underway. The extract of Himatanthus obovatus is currently under investigation.
Resumo:
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Resumo:
The effect of high antigen dose on the activation of cytochrome c peptide-primed lymph node cells was determined in several strains of mice by a limiting dilution analysis. It was found that proliferation of cytochrome c peptide-specific T cells was completely inhibited at high antigen concentration in C57BL/6 but only partially in DBA mice and had no effect in SJL mice. Clones derived from DBA mice showed a differential capacity to be inhibited by high antigen dose. On the other hand, interleukin 2 production by these clones was not impaired regardless of the antigen concentrations used.
Resumo:
To achieve the goal of sustained donor-specifi c transplantation (Tx) tolerance, research efforts are now focusing on therapies based on specifi c cell subsets with regulatory properties. We and others have previously highlighted the therapeutic potential of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTreg) in promoting long-term graft acceptance. Using more stringent experimental Tx models, we were however confronted to limitations. Indeed, while the transfer of antigenspecifi c nTreg promoted long-term MHC-mismatched skin allograft acceptance in lymphopenic mice in the absence of any immunosuppressive drug, allograft survival was only slightly prolonged when nTreg were transferred alone into non-lymphopenic mice. This suggested that in more stringent conditions, adjuvant therapies may be needed to effectively control alloreactive T cells (Teff). Whether and how the expansion of the Treg pool could be best combined with current immunosuppressive regimens in clinical settings remains to be defi ned. In this study, we have used in vitro assays and an in vivo skin Tx model to investigate the effects of various immunosuppressive drugs on the survival, proliferation and effector function of Teff and nTreg in response to alloantigens. Teff proliferation was inhibited in a dose-dependent manner by rapamycin and cyclosporine A, while anti-CD154 mAb only marginally affected Teff survival, proliferation and effector fucntion in vitro. Rapamycin promoted apoptosis of Teff as compared to nTreg that were more resistant in the presence of IL-2. In vivo, the transfer and/or expansion of Treg could be advantageously combined with rapamycin and anti-CD154 mAb treatment to signifi cantly prolong MHC-mismatched skin allografts survival in non-lymphopenic recipients. Taken together our data indicate that immunosuppressive drugs differentially target T-cell subsets and that some regimens could promote Treg expansion while controlling the Teff pool in response to alloantigens.
Resumo:
Malondialdehyde (MDA) is a natural and widespread genotoxin. Given its potentially deleterious effects, it is of interest to establish the identities of the cell types containing this aldehyde. We used in situ chemical trapping with 2-thiobarbituric acid and mass spectrometry with a deuterated standard to characterize MDA pools in the vegetative phase in Arabidopsis thaliana. In leaves, MDA occurred predominantly in the intracellular compartment of mesophyll cells and was enriched in chloroplasts where it was derived primarily from triunsaturated fatty acids (TFAs). High levels of MDA (most of which was unbound) were found within dividing cells in the root tip cell proliferation zone. The bulk of this MDA did not originate from TFAs. We confirmed the localization of MDA in transversal root sections. In addition to MDA in proliferating cells near the root tip we found evidence for the presence of MDA in pericyle cells. Remodeling of non-TFA-derived MDA pools occurred when seedlings were infected with the fungus Botrytis cinerea. Treatment of uninfected seedlings with mediators of plant stress responses (jasmonic acid or salicylic acid) increased seedling MDA levels over 20-fold. In summary, major pools of MDA are associated with cell division foci containing stem cells. The aldehyde is pathogen-inducible in these regions and its levels are increased by cellular mediators that impact defense and growth.
Resumo:
Paramyosin and Sm14 are two of the six antigens selected by the World Health Organization as candidates to compose a subunit vaccine against schistosomiasis. Both antigens are recognized by individuals naturally resistant to Schistosoma mansoni infection and induced protective immunity in the murine model. Three Sm14 epitopes and eleven paramyosin epitopes were selected by their ability to bind to different HLA-DR molecules using the TEPITOPE computer program, and these peptides were synthetically produced. The cellular recognition of Sm14 and paramyosin epitopes by peripheral blood mononuclear cells of individuals living in endemic area for schistosomiasis was tested by T cell proliferation assay. Among all Sm14 and paramyosin epitopes studied, Sm14-3 was preferentially recognized by individuals naturally resistant to S. mansoni infection while Para-5 was preferentially recognized by individuals resistant to reinfection. These two peptides represent promising antigens to be used in an experimental vaccine against schistosomiasis, since their preferential recognition by resistant individuals suggest their involvement in the induction of protective immunity.