949 resultados para special-purpose functionalized conjugated polymers
Resumo:
Electrostatic interaction is a strong force that attracts positively and negatively charged molecules to each other. Such an interaction is formed between positively charged polycationic polymers and negatively charged nucleic acids. In this dissertation, the electrostatic attraction between polycationic polymers and nucleic acids is exploited for applications in oral gene delivery and nucleic acid scavenging. An enhanced nanoparticle for oral gene delivery of a human Factor IX (hFIX) plasmid is developed using the polycationic polysaccharide, chitosan (Ch), in combination with protamine sulfate (PS) to treat hemophilia B. For nucleic acid scavenging purposes, the development of an effective nucleic acid scavenging nanofiber platform is described for dampening hyper-inflammation and reducing the formation of biofilms.
Non-viral gene therapy may be an attractive alternative to chronic protein replacement therapy. Orally administered non-viral gene vectors have been investigated for more than one decade with little progress made beyond the initial studies. Oral administration has many benefits over intravenous injection including patient compliance and overall cost; however, effective oral gene delivery systems remain elusive. To date, only chitosan carriers have demonstrated successful oral gene delivery due to chitosan’s stability via the oral route. In this study, we increase the transfection efficiency of the chitosan gene carrier by adding protamine sulfate to the nanoparticle formulation. The addition of protamine sulfate to the chitosan nanoparticles results in up to 42x higher in vitro transfection efficiency than chitosan nanoparticles without protamine sulfate. Therapeutic levels of hFIX protein are detected after oral delivery of Ch/PS/phFIX nanoparticles in 5/12 mice in vivo, ranging from 3 -132 ng/mL, as compared to levels below 4 ng/mL in 1/12 mice given Ch/phFIX nanoparticles. These results indicate the protamine sulfate enhances the transfection efficiency of chitosan and should be considered as an effective ternary component for applications in oral gene delivery.
Dying cells release nucleic acids (NA) and NA-complexes that activate the inflammatory pathways of immune cells. Sustained activation of these pathways contributes to chronic inflammation related to autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Studies have shown that certain soluble, cationic polymers can scavenge extracellular nucleic acids and inhibit RNA-and DNA-mediated activation of Toll-like receptors (TLRs) and inflammation. In this study, the cationic polymers are incorporated onto insoluble nanofibers, enabling local scavenging of negatively charged pro-inflammatory species such as damage-associated molecular pattern (DAMP) molecules in the extracellular space, reducing cytotoxicity related to unwanted internalization of soluble cationic polymers. In vitro data show that electrospun nanofibers grafted with cationic polymers, termed nucleic acid scavenging nanofibers (NASFs), can scavenge nucleic acid-based agonists of TLR 3 and TLR 9 directly from serum and prevent the production of NF-ĸB, an immune system activating transcription factor while also demonstrating low cytotoxicity. NASFs formed from poly (styrene-alt-maleic anhydride) conjugated with 1.8 kDa branched polyethylenimine (bPEI) resulted in randomly aligned fibers with diameters of 486±9 nm. NASFs effectively eliminate the immune stimulating response of NA based agonists CpG (TLR 9) and poly (I:C) (TLR 3) while not affecting the activation caused by the non-nucleic acid TLR agonist pam3CSK4. Results in a more biologically relevant context of doxorubicin-induced cell death in RAW cells demonstrates that NASFs block ~25-40% of NF-ĸβ response in Ramos-Blue cells treated with RAW extracellular debris, ie DAMPs, following doxorubicin treatment. Together, these data demonstrate that the formation of cationic NASFs by a simple, replicable, modular technique is effective and that such NASFs are capable of modulating localized inflammatory responses.
An understandable way to clinically apply the NASF is as a wound bandage. Chronic wounds are a serious clinical problem that is attributed to an extended period of inflammation as well as the presence of biofilms. An NASF bandage can potentially have two benefits in the treatment of chronic wounds by reducing the inflammation and preventing biofilm formation. NASF can prevent biofilm formation by reducing the NA present in the wound bed, therefore removing large components of what the bacteria use to develop their biofilm matrix, the extracellular polymeric substance, without which the biofilm cannot develop. The NASF described above is used to show the effect of the nucleic acid scavenging technology on in vitro and in vivo biofilm formation of P. aeruginosa, S. aureus, and S. epidermidis biofilms. The in vitro studies demonstrated that the NASFs were able to significantly reduce the biofilm formation in all three bacterial strains. In vivo studies of the NASF on mouse wounds infected with biofilm show that the NASF retain their functionality and are able to scavenge DNA, RNA, and protein from the wound bed. The NASF remove DNA that are maintaining the inflammatory state of the open wound and contributing to the extracellular polymeric substance (EPS), such as mtDNA, and also removing proteins that are required for bacteria/biofilm formation and maintenance such as chaperonin, ribosomal proteins, succinyl CoA-ligase, and polymerases. However, the NASF are not successful at decreasing the wound healing time because their repeated application and removal disrupts the wound bed and removes proteins required for wound healing such as fibronectin, vibronectin, keratin, and plasminogen. Further optimization of NASF treatment duration and potential combination treatments should be tested to reduce the unwanted side effects of increased wound healing time.
Resumo:
To achieve academic success, children with learning-related disabilities often receive special education supports at school. Currently, Canada does not have a federal department or integrated national system of education. Instead, each province and territory has a separate department or ministry that is responsible for the organization and delivery of education, including special education, at the elementary level. At the macro (national) level, inclusive education is the policy across Canada. However, each province and territory has its own legislation, definitions, and policies mandating special education services. These variations result in little consistency at the micro (individual school) level. Differences between eligibility requirements, supports offered, and delivery methods may present challenges for highly mobile families who must navigate new special education systems on behalf of their children with medical or learning challenges. One of the defining features of the Canadian military lifestyle is geographic mobility. As a result, many families are tasked with navigating new school systems for their children, a task that may be more difficult when children require special education services. The purpose of this study is to explore the impact of geographic mobility on Canadian military families and their children’s access to special education services. The secondary objective was to gain insight into supports that helped facilitate access to services, as well as supports that participants believe would have helped facilitate access. A qualitative approach, interpretive phenomenological analysis (IPA), was employed due to of its focus on individuals’ experiences and their understandings of a particular phenomenon. IPA allowed participants to reflect on the significance of their experiences, while the researcher engaged with these reflections to make sense of the meanings associated with their experiences. Nine semi-structured interviews were conducted with civilian caregivers who have a child with special education needs. An interview guide and probes were used to elicit rich, detailed, first-person accounts of their experiences navigating new special education systems. The main themes that emerged from the participants’ combined experiences addressed the emotional components of experiencing a transition, factors that may facilitate access to special education services, and career implications associated with accessing and maintaining special education services. Findings from the study illustrate that Canadian families experience many, and often times severe, barriers to accessing special education services after a posting. Furthermore, the impacts reported throughout the study echo the existing American literature on geographic mobility and access to special education services. Building on the literature, this study also highlights the need for further research exploring factors that create unique barriers to access in a Canadian context, resulting from the current special education climate, military policies, and military family support services.
Resumo:
This thesis describes the preparation of polymersomes from poly(ethylene glycol)-block-polycarbonate (PEG-PC) copolymers functionalized with pendant coumarin groups. Coumarin groups undergo photo-reversible dimerization when irradiated with specific ultraviolet wavelengths, so they can be used to prepare polymers with photo-responsive properties. In this case, the pendant coumarin groups enable stabilization of the polymersome membrane through photo-crosslinking of the hydrophobic block. Initially, several novel cinnamoyl and coumarin functionalized cyclic carbonate monomers were synthesized using ester, ether, or amide linkages. While the homopolymerization of these functionalized monomers proved challenging due to their high melting points, both cinnamoyl and coumarin functionalized monomers were successfully copolymerized with trimethylene carbonate (TMC) at 100 ℃ using a catalyst-free melt polymerization process where the TMC doubled as a solvent for the higher melting point monomer. Using this system, polycarbonate copolymers with up to 33% incorporation of the functionalized monomers were prepared. In addition, an investigation of some anomalous polymerization results identified previously unreported triethylamine-based catalysts for the melt polymerization of carbonate monomers. These studies also demonstrated that the catalyst-free polymerization of TMC occurs faster and at lower temperatures than previously reported. Subsequently, the photo-crosslinking of cinnamoyl and coumarin functionalized polycarbonates was compared and coumarin was identified as the more effective crosslinking agent when using 300-400 nm UV. An investigation of the photo-reversibility of the coumarin dimerization revealed no discernible change in the properties of crosslinked networks, but rapid photo-reversion in dilute solutions. The photo-crosslinking and photo-reversion kinetics of the coumarin functionalized polycarbonates were determined to be second-order in both cases. Finally, the self-assembly of PEG-PC diblock copolymers functionalized with coumarin was examined and both reverse solvent evaporation and solvent displacement were found to induce self-assembly, with hydrophilic mass fractions (f-factors) of 12-28% resulting in the formation of solid microparticles and nanoparticles and f-factors of 33-43% resulting in the formation of polymersomes. The stabilization of these polymersome membranes through photo-initiator-free photo-crosslinking was demonstrated with the crosslinking allowing polymersomes to withstand centrifugation at 12,000 x g. In addition, the encapsulation of calcein, as a model small molecule drug, in the stabilized polymersomes was successfully demonstrated using confocal microscopy.
Resumo:
Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.
Resumo:
The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.
Resumo:
Effective collaboration between school staff and parents of children identified as having special educational needs is considered to be an essential component of the child’s successful education. Differences in beliefs and perspectives adopted by the school staff and parents play an important role in the process of collaboration. However, little is known about the precise relationship between the beliefs and the process of collaboration. The purpose of this study was to explore the values and beliefs held by the school staff and parents in the areas of parenting and education. The study also explored the link between these beliefs and the process of collaboration within four parent-teacher dyads from mainstream primary schools. Focus groups and semi-structured interviews based on repertory grid technique were used. The findings highlighted an overall similarity in the participants’ views on collaboration and in their important beliefs about parenting and education. At the same time, differences in perspectives adopted by parents and teachers were also identified. The author discusses how these differences in perspectives are manifested in the process of collaboration from the point of Cultural Capital Theory. The factors such as power differentials, trust between parents and teachers, and limited resources and constraints of educational system are highlighted. Implication for practice for teachers and educational psychologists are discussed.
Resumo:
The purpose of this study conducted from January 2007 to April 2008, by NaFIRRI, was to investigate specifically the status of heavy metal (copper, Cu; Zinc, Zn and Lead, Pb) concentrations in bottom sediments of Lake Albert and relate the information to the safety of Lake environment and its entire fisheries.
Resumo:
International research with regard to the intended as well as to the unintended outcomes and effects of high-stakes testing shows that the impact of high-stakes tests has important consequences for the participants involved in the respective educational systems. The purpose of this special issue is to examine the implementation of high-stakes testing in different national school systems and to refer to the effects in view of the concept of Educational Governance. (DIPF/Orig.)
Resumo:
The purpose of this article is to examine the factors that affect the inclusion of pupils in programmes for children with special needs from the perspective of the theory of recognition. The concept of recognition, which includes three aspects of social justice (economic, cultural and political), argues that the institutional arrangements that prevent ‘parity of participation’ in the school social life of the children with special needs are affected not only by economic distribution but also by the patterns of cultural values. A review of the literature shows that the arrangements of education of children with special needs are influenced primarily by the patterns of cultural values of capability and inferiority, as well as stereotypical images of children with special needs. Due to the significant emphasis on learning skills for academic knowledge and grades, less attention is dedicated to factors of recognition and representational character, making it impossible to improve some meaningful elements of inclusion. Any participation of pupils in activities, the voices of the children, visibility of the children due to achievements and the problems of arbitrariness in determining boundaries between programmes are some such elements. Moreover, aided by theories, the actions that could contribute to better inclusion are reviewed. An effective approach to changes would be the creation of transformative conditions for the recognition and balancing of redistribution, recognition, and representation. (DIPF/Orig.)
Resumo:
Globally, there is a trend for healthy food products, preferably incorporating natural bioactive ingredients, replacing synthetic additives. From previous screening studies, extracts of Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) maintained nutritional properties and improved the antioxidant activity of cottage cheese. Nevertheless, this effect was limited to 7 days. Accordingly, aqueous extracts of these plants were microencapsulated in alginate and incorporated into cottage cheese to achieve an extended bioactivity. Plain cottage cheese, and cheese functionalized by direct addition of free decoctions, were prepared and compared. Independently of plant species, "functionalization type" factor did not show a significant effect on the nutritional parameters, as also confirmed in the linear discriminant analysis, where these parameters were not selected as discriminating variables. Furthermore, samples functionalized with microencapsulated extracts showed higher antioxidant activity after the 7th day, thereby demonstrating that the main purpose of this experimental work was achieved.
Resumo:
Purpose.: 5-Methoxy-carbonylamino-N-acetyltryptamine (5-MCA-NAT, a melatonin receptor agonist) produces a clear intraocular pressure (IOP) reduction in New Zealand White rabbits and glaucomatous monkeys. The goal of this study was to evaluate whether the hypotensive effect of 5-MCA-NAT was enhanced by the presence of cellulose derivatives, some of them with bioadhesive properties, as well as to determine whether these formulations were well tolerated by the ocular surface. Methods.: Formulations were prepared with propylene glycol (0.275%), carboxymethyl cellulose (CMC, 0.5% and 1.0%) of low and medium viscosity and hydroxypropylmethyl cellulose (0.3%). Quantification of 5-MCA-NAT (100 μM) was assessed by HPLC. In vitro tolerance was evaluated by the MTT method in human corneal-limbal epithelial cells and normal human conjunctival cells. In vivo tolerance was analyzed by biomicroscopy and specular microscopy in rabbit eyes. The ocular hypotensive effect was evaluated measuring IOP for 8 hours in rabbit eyes. Results.: All the formulations demonstrated good in vitro and in vivo tolerance. 5-MCA-NAT in CMC medium viscosity 0.5% was the most effective at reducing IOP (maximum IOP reduction, 30.27%), and its effect lasted approximately 7 hours. Conclusions.: The hypotensive effect of 5-MCA-NAT was increased by using bioadhesive polymers in formulations that are suitable for the ocular surface and also protective of the eye in long-term therapies. The use of 5-MCA-NAT combined with bioadhesive polymers is a good strategy in the treatment of ocular hypertension and glaucoma.
Resumo:
Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon–oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Technological advances during the past 30 years have dramatically improved survival rates for children with life-threatening conditions (preterm births, congenital anomalies, disease, or injury) resulting in children with special health care needs (CSHCN), children who have or are at increased risk for a chronic physical, developmental, behavioral, or emotional condition and who require health and related services beyond that required by children generally. There are approximately 10.2 million of these children in the United States or one in five households with a child with special health care needs. Care for these children is limited to home care, medical day care (Prescribed Pediatric Extended Care; P-PEC) or a long term care (LTC) facility. There is very limited research examining health outcomes of CSHCN and their families. The purpose of this research was to compare the effects of home care settings, P-PEC settings, and LTC settings on child health and functioning, family health and function, and health care service use of families with CSHCN. Eighty four CSHCN ages 2 to 21 years having a medically fragile or complex medical condition that required continual monitoring were enrolled with their parents/guardians. Interviews were conducted monthly for five months using the PedsQL TM Generic Core Module for child health and functioning, PedsQL TM Family Impact Module for family health and functioning, and Access to Care from the NS-CSHCN survey for health care services. Descriptive statistics, chi square, and ANCOVA were conducted to determine differences across care settings. Children in the P-PEC settings had a highest health care quality of life (HRQL) overall including physical and psychosocial functioning. Parents/guardians with CSHCN in LTC had the highest HRQL including having time and energy for a social life and employment. Parents/guardians with CSHCN in home care settings had the poorest HRQL including physical and psychosocial functioning with cognitive difficulties, difficulties with worry, communication, and daily activities. They had the fewest hours of employment and the most hours providing direct care for their children. Overall health care service use was the same across the care settings.
Resumo:
Cancer remains one of the world’s most devastating diseases, with more than 10 million new cases every year. However, traditional treatments have proven insufficient for successful medical management of cancer due to the chemotherapeutics’ difficulty in achieving therapeutic concentrations at the target site, non-specific cytotoxicity to normal tissues, and limited systemic circulation lifetime. Although, a concerted effort has been placed in developing and successfully employing nanoparticle(NP)-based drug delivery vehicles successfully mitigate the physiochemical and pharmacological limitations of chemotherapeutics, work towards controlling the subcellular fate of the carrier, and ultimately its payload, has been limited. Because efficient therapeutic action requires drug delivery to specific organelles, the subcellular barrier remains critical obstacle to maximize the full potential of NP-based delivery vehicles. The aim of my dissertation work is to better understand how NP-delivery vehicles’ structural, chemical, and physical properties affect the internalization method and subcellular localization of the nanocarrier. ^ In this work we explored how side-chain and backbone modifications affect the conjugated polymer nanoparticle (CPN) toxicity and subcellular localization. We discovered how subtle chemical modifications had profound consequences on the polymer’s accumulation inside the cell and cellular retention. We also examined how complexation of CPN with polysaccharides affects uptake efficiency and subcellular localization. ^ This work also presents how changes to CPN backbone biodegradability can significantly affect the subcellular localization of the material. A series of triphenyl phosphonium-containing CPNs were synthesized and the effect of backbone modifications have on the cellular toxicity and intracellular fate of the material. A mitochondrial-specific polymer exhibiting time-dependent release is reported. Finally, we present a novel polymerization technique which allows for the controlled incorporation of electron-accepting benzothiadiazole units onto the polymer chain. This facilitates tuning CPN emission towards red emission. ^ The work presented here, specifically, the effect that side-chain and structure, polysaccharide formulation and CPN degradability have on material’s uptake behavior, can help maximize the full potential of NP-based delivery vehicles for improved chemotherapeutic drug delivery.^