877 resultados para sparse matrices
Resumo:
This thesis work aims to develop original analytical methods for the determination of drugs with a potential for abuse, for the analysis of substances used in the pharmacological treatment of drug addiction in biological samples and for the monitoring of potentially toxic compounds added to street drugs. In fact reliable analytical techniques can play an important role in this setting. They can be employed to reveal drug intake, allowing the identification of drug users and to assess drug blood levels, assisting physicians in the management of the treatment. Pharmacological therapy needs to be carefully monitored indeed in order to optimize the dose scheduling according to the specific needs of the patient and to discourage improper use of the medication. In particular, different methods have been developed for the detection of gamma-hydroxybutiric acid (GHB), prescribed for the treatment of alcohol addiction, of glucocorticoids, one of the most abused pharmaceutical class to enhance sport performance and of adulterants, pharmacologically active compounds added to illicit drugs for recreational purposes. All the presented methods are based on capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) coupled to various detectors (diode array detector, mass spectrometer). Biological samples pre-treatment was carried out using different extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE). Different matrices have been considered: human plasma, dried blood spots, human urine, simulated street drugs. These developed analytical methods are individually described and discussed in this thesis work.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.
Resumo:
To investigate the inhomogeneity of radiofrequency fields at higher field strengths that can interfere with established volumetric methods, in particular for the determination of visceral (VAT) and subcutaneous adipose tissue (SCAT). A versatile, interactive sparse sampling (VISS) method is proposed to determine VAT, SCAT, and also total body volume (TBV).
Resumo:
Engineered muscle constructs provide a promising perspective on the regeneration or substitution of irreversibly damaged skeletal muscle. However, the highly ordered structure of native muscle tissue necessitates special consideration during scaffold development. Multiple approaches to the design of anisotropically structured substrates with grooved micropatterns or parallel-aligned fibres have previously been undertaken. In this study we report the guidance effect of a scaffold that combines both approaches, oriented fibres and a grooved topography. By electrospinning onto a topographically structured collector, matrices of parallel-oriented poly(ε-caprolactone) fibres with an imprinted wavy topography of 90 µm periodicity were produced. Matrices of randomly oriented fibres or parallel-oriented fibres without micropatterns served as controls. As previously shown, un-patterned, parallel-oriented substrates induced myotube orientation that is parallel to fibre direction. Interestingly, pattern addition induced an orientation of myotubes at an angle of 24° (statistical median) relative to fibre orientation. Myotube length was significantly increased on aligned micropatterned substrates in comparison to that on aligned substrates without pattern (436 ± 245 µm versus 365 ± 212 µm; p < 0.05). We report an innovative, yet simple, design to produce micropatterned electrospun scaffolds that induce an unexpected myotube orientation and an increase in myotube length.
Resumo:
Marginal generalized linear models can be used for clustered and longitudinal data by fitting a model as if the data were independent and using an empirical estimator of parameter standard errors. We extend this approach to data where the number of observations correlated with a given one grows with sample size and show that parameter estimates are consistent and asymptotically Normal with a slower convergence rate than for independent data, and that an information sandwich variance estimator is consistent. We present two problems that motivated this work, the modelling of patterns of HIV genetic variation and the behavior of clustered data estimators when clusters are large.
Resumo:
In this work, we present a multichannel EEG decomposition model based on an adaptive topographic time-frequency approximation technique. It is an extension of the Matching Pursuit algorithm and called dependency multichannel matching pursuit (DMMP). It takes the physiologically explainable and statistically observable topographic dependencies between the channels into account, namely the spatial smoothness of neighboring electrodes that is implied by the electric leadfield. DMMP decomposes a multichannel signal as a weighted sum of atoms from a given dictionary where the single channels are represented from exactly the same subset of a complete dictionary. The decomposition is illustrated on topographical EEG data during different physiological conditions using a complete Gabor dictionary. Further the extension of the single-channel time-frequency distribution to a multichannel time-frequency distribution is given. This can be used for the visualization of the decomposition structure of multichannel EEG. A clustering procedure applied to the topographies, the vectors of the corresponding contribution of an atom to the signal in each channel produced by DMMP, leads to an extremely sparse topographic decomposition of the EEG.