981 resultados para sodium 24
Resumo:
Weekly newsletter for Center For Acute Disease Epidemiology of Iowa Department of Public Health.
Resumo:
Weekly Newsletter
Resumo:
Record of the Fatalities for Motor Vehicle Accidents in Iowa per week.
Resumo:
Weekly newsletter for Center For Acute Disease Epidemiology of Iowa Department of Public Health.
Resumo:
Weekly newsletter for Center For Acute Disease Epidemiology of Iowa Department of Public Health.
Resumo:
Weekly Newsletter
Resumo:
Metabolic acidosis is a prevalent complication in moderate and late stages of chronic kidney disease (CKD). It is established that the correction of metabolic acidosis may improve metabolic bone disorders and protein degradation in the skeletal muscle, two characteristic complications of patients with advanced CKD. In the last 18 months, three randomized controlled trials have drawn the attention on a novel indication to correct metabolic acidosis in these patients, i.e., halting CKD progression. These data show that sodium bicarbonate, a cheap and easily manageable treatment, may delay the progression of CKD and the need of a renal replacement therapy such as dialysis or kidney transplantation.
Resumo:
Astrocytes are responsible for the majority of the clearance of extracellular glutamate released during neuronal activity. dl-threo-beta-benzyloxyaspartate (TBOA) is extensively used as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na(+)-glutamate transport system is very efficient and its activation by glutamate causes rapid intracellular Na(+) concentration (Na(+)(i)) changes that enable real time monitoring of transporter activity. Na(+)(i) was monitored by fluorescence microscopy in single astrocytes using the fluorescent Na(+)-sensitive probe sodium-binding benzofuran isophtalate. When applied alone, TFB-TBOA, at a concentration of 1 muM, caused small alterations of Na(+)(i). TFB-TBOA inhibited the Na(+)(i) response evoked by 200 muM glutamate in a concentration-dependent manner with IC(50) value of 43+/-9 nM, as measured on the amplitude of the Na(+)(i) response. The maximum inhibition of glutamate-evoked Na(+)(i) increase by TFB-TBOA was >80%, but was only partly reversible. The residual response persisted in the presence of the AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na(+)(i) elevations caused by the application of d-aspartate, a transporter substrate that does not activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the membrane properties of cultured cortical neurons recorded in whole-cell patch clamp. Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to be one of the most useful pharmacological tools available so far for studying glial glutamate transporters.
Resumo:
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Resumo:
Rename Iowa Refugee Service Center as Bureau of Refugee Programs and place it administratively in the Department of Human Services.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.