989 resultados para sinusoidal phase modulating
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature similar to 10(8) - 10(9.5) K compared to the hot protons of temperature similar to 10(10.2) - 10(11.8) K in the range of the accretion rate in Eddington units 0.01 less than or simiar to (M) over dot less than or similar to 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed minosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.
Resumo:
Glycodelin A is a progesterone-induced endometrial glycoprotein which has been amply documented to play a role in down-modulation of the maternal immune response to fetal allo-antigens and to be indispensable for the maintenance and progression of pregnancy. Earlier studies from our laboratory have focused on the effect of glycodelin on T cells, key regulators of both the antibody and cell-mediated arms of the acquired immune system. Glycodelin-induced apoptosis inactivated T cells occurs through a caspase-dependant intrinsic mitochondrial pathway. Interestingly, glycodelin inhibited the proliferation of B cells but did not induce apoptosis. More recently, we have studied the effect of glycodelin on the cells of the innate immune system, namely monocytes and NK cells. We have found that glycodelin induced apoptosis in monocytic cells before their differentiation to macrophages, via the mitochondrial pathway, but did not affect their phagocytic capacity after differentiation. Glycodelin induced apoptosis in NK cells but this activity was independent of caspases. In conclusion, glycodelin is observed to affect many cells of the immune system, although the nature of the effect and signaling mechanisms involved in each cell type may be distinct.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
Phase separation (PS) in hole-doped cobaltites (La1-xSrxCoxO3) is drawing renewed interest recently. In particular, the magnetic behavior of La0.85Sr0.15CoO3 has been subjected to a controversial debate for the past several years; while some groups show evidence for magnetic PS, others show spin glass (SG) behavior. Here, an attempt is made to resolve the controversy related to ``PS versus SG'' behavior in this compound. We present the results of a comprehensive investigation of the dc magnetization, ac susceptibility, and the magnetotransport properties of La0.85Sr0.15CoO3 samples. We contemplate that the magnetic PS in La0.85Sr0.15CoO3 is neither intrinsic nor inherent, but it is a consequence of the preparation conditions. It is realized that a low temperature annealed (LTA) sample shows PS whereas the high temperature annealed (HTA) sample shows SG behavior. The Brillouin-like behavior of field cooled dc magnetization and apparently no frequency dependent peak shift in ac susceptibility for the LTA sample characterize it to be of ferromagneticlike whereas a kink in field cooled dc magnetization and a considerable amount (similar to 3 K) of frequency dependent peak shift in the ac susceptibility for the HTA sample characterize it to be of SG state. The magnetotransport properties show that the HTA sample is more semiconducting as compared to the LTA sample. This is interpreted in terms of the presence of isolated as well as coalescing metallic ferromagnetic clusters in the case of LTA sample. The magnetoresistance (MR) at 10 K for the HTA sample exhibits a huge value (similar to 65%) as compared to the LTA sample, and it monotonically decreases with the rise in temperature. Such a high value of MR in the case of HTA sample is strongly believed to be due to the spin dependent part of random potential distribution. Further, the slow decay of remnant magnetization with progress of time and the existence of hysteresis at higher temperatures (up to 200 K) in the case of LTA sample as compared to the HTA sample clearly unveil different magnetic states associated with them.
Resumo:
Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.
Resumo:
We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.
Resumo:
The crystal structures of three conformationally locked esters, namely the centrosymmetric tetrabenzoate of all-axial per-hydronaphthalene- 2,3,4a, 6,7,8a-hexaol, viz. trans-4a, 8a-dihydroxyperhydronaphthalene-2,3,6,7-tetrayl tetrabenzoate, C38H34O10, and the diacetate and dibenzoate of all-axial perhydronaphthalene-2,3,4a, 8a-tetraol, viz. (2R*,3R*,4aS*,8aS*)-4a, 8a-dihydroxyperhydronaphthalene-2,3-diyl diacetate, C-14-H22O6, and (2R*, 3R*, 4aS*, 8aS*)-4a, 8a-dihydroxyperhydronaphthalene- 2,3-diyl dibenzoate, C24H26O6, have been analyzed in order to examine the preference of their supramolecular assemblies towards competing inter-and intramolecular O-H center dot center dot center dot O hydrogen bonds. It was anticipated that the supramolecular assembly of the esters under study would adopt two principal hydrogen-bonding modes, namely one that employs intermolecular O-H center dot center dot center dot O hydrogen bonds (mode 1) and another that sacrifices those for intramolecular O-H center dot center dot center dot O hydrogen bonds and settles for a crystal packing dictated by weak intermolecular interactions alone (mode 2). Thus, while the molecular assembly of the two crystalline diacyl derivatives conformed to a combination of hydrogen-bonding modes 1 and 2, the crystal packing in the tetrabenzoate preferred to follow mode 2 exclusively.
Resumo:
A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Resumo:
Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.
Resumo:
Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.
Resumo:
Induction motor is a typical member of a multi-domain, non-linear, high order dynamic system. For speed control a three phase induction motor is modelled as a d–q model where linearity is assumed and non-idealities are ignored. Approximation of the physical characteristic gives a simulated behaviour away from the natural behaviour. This paper proposes a bond graph model of an induction motor that can incorporate the non-linearities and non-idealities thereby resembling the physical system more closely. The model is validated by applying the linearity and idealities constraints which shows that the conventional ‘abc’ model is a special case of the proposed generalised model.