960 resultados para sampling spatial location


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine good ecological status and conservation of the Sub-Marine area of the Bay of Biscay, the implementation of a new rocky intertidal habitats monitoring is needed. A protocol has been adapted from the Brittany protocol for the water body FRFC11 "Basque coast" for the two indicators "intertidal macroalgae" and "subtidal macroalgae" under the Water Framework Directive to qualify the ecological. However no protocol has been validated for fauna in front of meridional characters of the benthic communities. Investigations carried out on macroalgae communities on intertidal area in WFD framework, since 2008, constitute an important working basis. This is the aim of the Bigorno project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New search and Monitoring for decision support), financed by the Agency of Marine Protected Areas and the Departmental Council. To implement knowledge, a sampling protocol has been used in 2015 on the boulder fields of Guéthary. This site is part of Natura 2000 area "rocky Basque coast and offshore extension "It constitutes also a Znieff site and restricted fishing area. The sampling strategy considers the heterogeneity of substrates and the presence of intertidal microhabitats. Two main habitats are present: "mediolittoral rock in exposed area habitat" and "boulder fields". Habitat "intertidal pools and permanent ponds" is also present but, it is not investigated. Sampling effort is of 353 quadrats of 0.1 m², drawn randomly according to a spatially stratified sampling plan, defined by habitat and algal belts. Taxa identification and enumeration are done on each quadrat. The objective of this work is to expose results from data collected during 2015 sampling program. The importance of characterizing benthic fauna communities spatial distribution belonging to the Basque coast according to algal belts defines during the WDF survey was highlighted. Concurrently, indicators of biodiversity were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bubble crab Dotilla fenestrata forms very dense populations on the sand flats of the eastern coast of Inhaca Island, Mozambique, making it an interesting biological model to examine spatial distribution patterns and test the relative efficiency of common sampling methods. Due to its apparent ecological importance within the sandy intertidal community, understanding the factors ruling the dynamics of Dotilla populations is also a key issue. In this study, different techniques of estimating crab density are described, and the trends of spatial distribution of the different population categories are shown. The studied populations are arranged in discrete patches located at the well-drained crests of nearly parallel mega sand ripples. For a given sample size, there was an obvious gain in precision by using a stratified random sampling technique, considering discrete patches as strata, compared to the simple random design. Density average and variance differed considerably among patches since juveniles and ovigerous females were found clumped, with higher densities at the lower and upper shore levels, respectively. Burrow counting was found to be an adequate method for large-scale sampling, although consistently underestimating actual crab density by nearly half. Regression analyses suggested that crabs smaller than 2.9 mm carapace width tend to be undetected in visual burrow counts. A visual survey of sampling plots over several patches of a large Dotilla population showed that crab density varied in an interesting oscillating pattern, apparently following the topography of the sand flat. Patches extending to the lower shore contained higher densities than those mostly covering the higher shore. Within-patch density variability also pointed to the same trend, but the density increment towards the lowest shore level varied greatly among the patches compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the objectives of this study is to perform classification of socio-demographic components for the level of city section in City of Lisbon. In order to accomplish suitable platform for the restaurant potentiality map, the socio-demographic components were selected to produce a map of spatial clusters in accordance to restaurant suitability. Consequently, the second objective is to obtain potentiality map in terms of underestimation and overestimation in number of restaurants. To the best of our knowledge there has not been found identical methodology for the estimation of restaurant potentiality. The results were achieved with combination of SOM (Self-Organized Map) which provides a segmentation map and GAM (Generalized Additive Model) with spatial component for restaurant potentiality. Final results indicate that the highest influence in restaurant potentiality is given to tourist sites, spatial autocorrelation in terms of neighboring restaurants (spatial component), and tax value, where lower importance is given to household with 1 or 2 members and employed population, respectively. In addition, an important conclusion is that the most attractive market sites have shown no change or moderate underestimation in terms of restaurants potentiality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress in control of bovine tuberculosis (bTB) is often not uniform, usually due to the effect of one or more sometimes unknown epidemiological factors impairing the success of eradication programs. Use of spatial analysis can help to identify clusters of persistence of disease, leading to the identification of these factors thus allowing the implementation of targeted control measures, and may provide some insights of disease transmission, particularly when combined with molecular typing techniques. Here, the spatial dynamics of bTB in a high prevalence region of Spain were assessed during a three year period (2010-2012) using data from the eradication campaigns to detect clusters of positive bTB herds and of those infected with certain Mycobacterium bovis strains (characterized using spoligotyping and VNTR typing). In addition, the within-herd transmission coefficient (β) was estimated in infected herds and its spatial distribution and association with other potential outbreak and herd variables was evaluated. Significant clustering of positive herds was identified in the three years of the study in the same location ("high risk area"). Three spoligotypes (SB0339, SB0121 and SB1142) accounted for >70% of the outbreaks detected in the three years. VNTR subtyping revealed the presence of few but highly prevalent strains within the high risk area, suggesting maintained transmission in the area. The spatial autocorrelation found in the distribution of the estimated within-herd transmission coefficients in herds located within distances <14 km and the results of the spatial regression analysis, support the hypothesis of shared local factors affecting disease transmission in farms located at a close proximity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2) = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest biomass has been having an increasing importance in the world economy and in the evaluation of the forests development and monitoring. It was identified as a global strategic reserve, due to its applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. The estimation of above ground biomass is frequently done with allometric functions per species with plot inventory data. An adequate sampling design and intensity for an error threshold is required. The estimation per unit area is done using an extrapolation method. This procedure is labour demanding and costly. The mail goal of this study is the development of allometric functions for the estimation of above ground biomass with ground cover as independent variable, for forest areas of holm aok (Quercus rotundifolia), cork oak (Quercus suber) and umbrella pine (Pinus pinea) in multiple use systems. Ground cover per species was derived from crown horizontal projection obtained by processing high resolution satellite images, orthorectified, geometrically and atmospheric corrected, with multi-resolution segmentation method and object oriented classification. Forest inventory data were used to estimate plot above ground biomass with published allometric functions at tree level. The developed functions were fitted for monospecies stands and for multispecies stands of Quercus rotundifolia and Quercus suber, and Quercus suber and Pinus pinea. The stand composition was considered adding dummy variables to distinguish monospecies from multispecies stands. The models showed a good performance. Noteworthy is that the dummy variables, reflecting the differences between species, originated improvements in the models. Significant differences were found for above ground biomass estimation with the functions with and without the dummy variables. An error threshold of 10% corresponds to stand areas of about 40 ha. This method enables the overall area evaluation, not requiring extrapolation procedures, for the three species, which occur frequently in multispecies stands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-specific management (SSM) is a form of precision agriculture whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field. SSM enables the identification of regions (homogeneous management zones) within the area delimited by field boundaries. These subfield regions constitute areas that have similar permanent characteristics. Traditional soil and pasture sampling and the necessary laboratory analysis are time-consuming, labour-intensive and cost prohibitive, not viable from a SSM perspective because it needs a large number of soil and pasture samples in order to achieve a good representation of soil properties, nutrient levels and pasture quality and productivity. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of soil nutrients and pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Three types of sensors were evaluated in a 7ha pasture experimental field: an electromagnetic induction sensor (“DUALEM 1S”, which measures the soil apparent electrical conductivity, ECa), an active optical sensor ("OptRx®", which measures the NDVI, “Normalized Difference Vegetation Index”) and a capacitance probe ("GrassMaster II" which estimates plant mass). The results indicate the possibility of using a soil electrical conductivity probe as, probably, the best tool for monitoring not only some of the characteristics of the soil, but also those of the pasture, which could represent an important help in simplifying the process of sampling and support SSM decision making, in precision agriculture projects. On the other hand, the significant and very strong correlations obtained between capacitance and NDVI and between any of these parameters and the pasture productivity shows the potential of these tools for monitoring the evolution of spatial and temporal patterns of the vegetative growth of biodiverse pasture, for identifying different plant species and variability in pasture yield in Alentejo dry-land farming systems. These results are relevant for the selection of an adequate sensing system for a particular application and open new perspectives for other works that would allow the testing, calibration and validation of the sensors in a wider range of pasture production conditions, namely the extraordinary diversity of botanical species that are characteristic of the Mediterranean region at the different periods of the year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This short paper presents a numerical method for spatial and temporal downscaling of solar global radiation and mean air temperature data from global weather forecast models and its validation. The final objective is to develop a prediction algorithm to be integrated in energy management models and forecast of energy harvesting in solar thermal systems of medium/low temperature. Initially, hourly prediction and measurement data of solar global radiation and mean air temperature were obtained, being then numerically downscaled to half-hourly prediction values for the location where measurements were taken. The differences between predictions and measurements were analyzed for more than one year of data of mean air temperature and solar global radiation on clear sky days, resulting in relative daily deviations of around -0.9±3.8% and 0.02±3.92%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to discuss the specificities of the role of services in the economic structuring and in the social liveliness and attractiveness of periurban areas. Drawing upon on the result of an empirical work developed in 5 different parishes of Lisbon Metropolitan area, which represent five categories of periurban spaces previously identified, it is analysed the role of services in these “in-between” territories and the way they are important in the spatial economic structuring of these areas and in the quality of life and well-being of their inhabitants and users. A tentative typology for framing the analysis of the role of services on periurban metropolitan spaces is suggested and some policy implications are pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the spatial variability of saturated hydraulic conductivity in the soil in an area of 51,850 ha at the headwaters of the Araguaia River MT/GO. This area is highly vulnerable because it is a location of recharging through natural water infiltration of the Guarani Aquifer System and an area of intense increases in agriculture since its adoption by growers in the last 30 years. Soil samples were collected at 383 points, geographically located by GPS. The samples were collected from depths of 0 - 20 cm and 60 - 80 cm. Exploratory statistics and box-plot were used in the descriptive analysis and semivariogram were constructed to determine the spatial model. The exploratory analysis showed that the mean hydraulic conductivity in the superficial layer was less than at the level of 60-80 cm; however, the greatest variability evaluated with a coefficient of variation also was from this layer. Data tended towards a normal distribution. These results can be explained by the greater soil compaction in the superficial layer. The semivariogram models, adjusted for the two layers, were exponential and demonstrated moderate and strong dependence, with ranges of 5000 and 3000 utm respectively. It was concluded that soil use is influencing the spatial distribution model of the hydraulic conductivity in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field infestation and spatial distribution of introduced Bactrocera carambolae Drew and Hancock and native species of Anastrepha in common guavas [Psidium guajava (L.)] were investigated in the eastern Amazon. Fruit sampling was carried out in the municipalities of Calc¸oene and Oiapoque in the state of Amapa, Brazil. The frequency distribution of larvae in fruit was fitted to the negative binomial distribution. Anastrepha striata was more abundant in both sampled areas in comparison to Anastrepha fraterculus (Wiedemann) and B. carambolae. The frequency distribution analysis of adults revealed an aggregated pattern for B. carambolae as well as for A. fraterculus and Anastrepha striata Schiner, described by the negative binomial distribution. Although the populations of Anastrepha spp. may have suffered some impact due to the presence of B. carambolae, the results are still not robust enough to indicate effective reduction in the abundance of Anastrepha spp. caused by B. carambolae in a general sense. The high degree of aggregation observed for both species suggests interspecific co-occurrence with the simultaneous presence of both species in the analysed fruit. Moreover, a significant fraction of uninfested guavas also indicated absence of competitive displacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salient stimuli, like sudden changes in the environment or emotional stimuli, generate a priority signal that captures attention even if they are task-irrelevant. However, to achieve goal-driven behavior, we need to ignore them and to avoid being distracted. It is generally agreed that top-down factors can help us to filter out distractors. A fundamental question is how and at which stage of processing the rejection of distractors is achieved. Two circumstances under which the allocation of attention to distractors is supposed to be prevented are represented by the case in which distractors occur at an unattended location (as determined by the deployment of endogenous spatial attention) and when the amount of visual working memory resources is reduced by an ongoing task. The present thesis is focused on the impact of these factors on three sources of distraction, namely auditory and visual onsets (Experiments 1 and 2, respectively) and pleasant scenes (Experiment 3). In the first two studies we recorded neural correlates of distractor processing (i.e., Event-Related Potentials), whereas in the last study we used interference effects on behavior (i.e., a slowing down of response times on a simultaneous task) to index distraction. Endogenous spatial attention reduced distraction by auditory stimuli and eliminated distraction by visual onsets. Differently, visual working memory load only affected the processing of visual onsets. Emotional interference persisted even when scenes occurred always at unattended locations and when visual working memory was loaded. Altogether, these findings indicate that the ability to detect the location of salient task-irrelevant sounds and identify the affective significance of natural scenes is preserved even when the amount of visual working memory resources is reduced by an ongoing task and when endogenous attention is elsewhere directed. However, these results also indicate that the processing of auditory and visual distractors is not entirely automatic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.