972 resultados para rupture numérique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a comprehensive physical description of the vaporization, self-assembly, agglomeration, and buckling kinetics of sessile nanofluid droplets pinned on a hydrophobic substrate. We have deciphered five distinct regimes of the droplet life cycle. Regimes I-III consists of evaporation-induced preferential agglomeration that leads to the formation of a unique dome-shaped inhomogeneous shell with a stratified varying-density liquid core. Regime IV involves capillary-pressure-initiated shell buckling and stress-induced shell rupture. Regime V marks rupture-induced cavity inception and growth. We demonstrate through scaling arguments that the growth of the cavity (which controls the final morphology or structure) can be described by a universal function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occurrence of the April 25, 2015 (Mw 7.8) earthquake near Gorkha, central Nepal, and another one that followed on May 12 (Mw 7.3), located similar to 140 km to its east, provides an exceptional opportunity to understand some new facets of Himalayan earthquakes. Here we attempt to assess the seismotectonics of these earthquakes based on the deformational field generated by these events, along with the spatial and temporal characteristics of their aftershocks. When integrated with some of the post-earthquake field observations, including the localization of damage and surface deformation, it became obvious that although the mainshock slip was mostly limited to the Main Himalayan Thrust (MHT), the rupture did not propagate to the Main Frontal Thrust (MFT). Field evidence, supported by the available InSAR imagery of the deformation field, suggests that a component of slip could have emerged through a previously identified out-of-sequence thrust/active thrust in the region that parallels the Main Central Thrust (MCT), known in the literature as a co-linear physiographic transitional zone called PT2. Termination of the first rupture, triggering of the second large earthquake, and distribution of aftershocks are also spatially constrained by the eastern extremity of PT2. Mechanism of the 2015 sequence demonstrates that the out-of-sequence thrusts may accommodate part of the slip, an aspect that needs to be considered in the current understanding of the mechanism of earthquakes originating on the MHT. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, an attempt has been made to prepare the seismic intensity map for south India considering the probable earthquakes in the region. Anbazhagan et al. (Nat Hazards 60:1325-1345, 2012) have identified eight probable future earthquake zones in south India based on rupture-based seismic hazard analysis. Anbazhagan et al. (Eng Geol 171:81-95, 2014) has estimated the maximum future earthquake magnitude at these eight zones using regional rupture character. In this study, the whole south India is divided into several grids of size 1(o) x 1(o) and the intensity at each grid point is calculated using the regional intensity model for the maximum earthquake magnitude at each of the eight zones. The intensity due to earthquakes at these zones is mapped and thus eight seismic intensity maps are prepared. The final seismic intensity map of south India is obtained by considering the maximum intensity at each grid point due to the estimated earthquakes. By looking at the seismic intensity map, one can expect slight to heavy damage due to the probable earthquake magnitudes. Heavy damage may happen close to the probable earthquake zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The poly (l-lysine)-based SPL7013 dendrimer with naphthalene disulphonate surface groups blocks the entry of HIV-1 into target cells and is in clinical trials for development as a topical microbicide. Its mechanism of action against R5 HIV-1, the HIV-1 variant implicated in transmission across individuals, remains poorly understood. Using docking and fully atomistic MD simulations, we find that SPL7013 binds tightly to R5 gp120 in the gp120-CD4 complex but weakly to gp120 alone. Further, the binding, although to multiple regions of gp120, does not occlude the CD4 binding site on gp120, suggesting that SPL7013 does not prevent the binding of R5 gp120 to CD4. Using MD simulations to compute binding energies of several docked structures, we find that SPL7013 binding to gp120 significantly weakens the gp120-CD4 complex. Finally, we use steered molecular dynamics (SMD) to study the kinetics of the dissociation of the gp120-CD4 complex in the absence of the dendrimer and with the dendrimer bound in each of the several stable configurations to gp120. We find that SPL7013 significantly lowers the force required to rupture the gp120-CD4 complex and accelerates its dissociation. Taken together, our findings suggest that SPL7013 compromises the stability of the R5 gp120-CD4 complex, potentially preventing the accrual of the requisite number of gp120-CD4 complexes across the virus-cell interface, thereby blocking virus entry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents an experimental study on critical sensitivity in rocks. Critical sensitivity means that the response of a system to external controlling variable may become significantly sensitive as the system approaches its catastrophic rupture point. It is found that the sensitivities measured by responses on three scales (sample scale, locally macroscopic scales and mesoscopic scale) display increase prior to catastrophic transition point. These experimental results do support the concept that critical sensitivity might be a common precursory feature of catastrophe. Furthermore, our previous theoretical model is extended to explore the fluctuations in critical sensitivity in the rock tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the earthquake recurrence and the characteristics of earthquake series, rupture tests of rock samples and plexiglass samples were made. On rock samples, a number of acoustic emission (AE) and strain measuring points were deployed; the load was one side direct shear. The variation characteristics of AE and strain at different detecting points around the extra large fracture were observed and studied. On plexiglass samples, a series of inclined cracks were prefabricated by a small-scale compressive testing machine. The samples were then loaded on a shockproof platen, when the samples were loaded, the stress intensity factor (SIF) was determined by the laser interferometric technique and shadow optical method of caustics. The fracture conditions such as material toughness around the extra large fracture were also studied. From those experimental results and the theory of fracture mechanics, the earthquake recurrence period and the trend of post-seismic development were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to reveal the underlying mesoscopic mechanism governing the experimentally observed failure in solids subjected to impact loading, this paper presents a model of statistical microdamage evolution to macroscopic failure, in particular to spallation. Based on statistical microdamage mechanics and experimental measurement of nucleation and growth of microcracks in an Al alloy subjected to plate impact loading, the evolution law of damage and the dynamical function of damage are obtained. Then, a lower bound to damage localization can be derived. It is found that the damage evolution beyond the threshold of damage localization is extremely fast. So, damage localization can serve as a precursor to failure. This is supported by experimental observations. On the other hand, the prediction of failure becomes more accurate, when the dynamic function of damage is fitted with longer experimental observations. We also looked at the failure in creep with the same idea. Still, damage localization is a nice precursor to failure in creep rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

选择素(selectin)与配体相互作用在诸如炎症反应、肿瘤转移等生物学过程中具有重要作用;作用力影响受体-配体键解离.本文发展了基于光阱技术的新实验方法,用于考察P-选择素(P-selectin)与P-选择素糖蛋白配体-1(P-selectin Glycoprotein Ligand 1, PSGL-1)相互作用的解离过程.采用黏滞力法对光阱刚度系数进行标定,并通过分子在玻璃小球表面的功能化表征,研究力作用下P-selectin/PSGL-1键的解离,得到了在较低加载率(<25 pN/s)下键解离的断裂力分布,发现键的最可几断裂力随加载率而增加.实验结果在较低加载率下补充和验证了已有的结论.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic fractography and scanning electronic microscopy (SEM) are used to determine the direct relationship between the fracture surface morphology and the main crack velocity during the rapid rupture of polymethylmethacrylate (PMMA). Two critical crack velocities are found for the fracture. Quasi-parabolic markings will appear when the crack speed exceeds the first critical speed. Crack propagating at speed above the second critical speed leaves a thicket of small branches penetrating the surface behind them. Both critical speeds are functions of the thickness of the specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetics and its regulation by extrinsic physical factors govern selectin-ligand interactions that mediate tethering and rolling of circulating cells on the vessel wall under hemodynamic forces. While the force regulation of off-rate for dissociation of selectin-ligand bonds has been extensively studied, much less is known about how transport impacts the on-rate for association of these bonds and their stability. We used atomic force microscopy (AFM) to quantify how the contact duration, loading rate, and approach velocity affected kinetic rates and strength of bonds of P-selectin interacting with P-selectin glycoprotein ligand I (PSGL-1). We found a saturable relationship between the contact time and the rupture force, a biphasic relationship between the adhesion probability and the retraction velocity, a piece-wise linear relationship between the rupture force and the logarithm of the loading rate, and a threshold relationship between the approach velocity and the rupture force. These results provide new insights into how physical factors regulate receptor-ligand interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damage evolution of heterogeneous brittle media involves a wide range of length scales. The coupling between these length scales underlies the mechanism of damage evolution and rupture. However, few of previous numerical algorithms consider the effects of the trans-scale coupling effectively. In this paper, an adaptive mesh refinement FEM algorithm is developed to simulate this trans-scale coupling. The adaptive serendipity element is implemented in this algorithm, and several special discontinuous base functions are created to avoid the incompatible displacement between the elements. Both the benchmark and a typical numerical example under quasi-static loading are given to justify the effectiveness of this model. The numerical results reproduce a series of characteristics of damage and rupture in heterogeneous brittle media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimensionless numbers: reduced Mach number M, damage number S, stress wave Fourier number P, intrinsic Deborah number D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The evaluation of P and the estimation of temperature increase show that the energy equation can be ignored as the first approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number De*.