932 resultados para reverse transcriptase inhibitors
Resumo:
Tyrosine kinases play central roles in the growth and differentiation of normal and tumor cells. In this study, we have analyzed the general tyrosine kinase expression profile of a prostate carcinoma (PCA) xenograft, CWR22. We describe here an improved reverse transcriptase-PCR approach that permits identification of nearly 40 different kinases in a single screening; several of these kinases are newly cloned kinases and some are novel. According to this, there are 11 receptor kinases, 9 nonreceptor kinases, and at least 7 dual kinases expressed in the xenograft tissue. The receptor kinases include erbB2, erbB3, Ret, platelet-derived growth factor receptor, sky, nyk, eph, htk, sek (eph), ddr, and tkt. The nonreceptor kinases are lck, yes, abl, arg, JakI, tyk2, and etk/bmx. Most of the dual kinases are in the mitogen-activating protein (MAP) kinase-kinase (MKK) family, which includes MKK3, MKK4, MEK5, and a novel one. As a complementary approach, we also analyzed by specific reverse transcriptase-PCR primers the expression profile of erbB/epidermal growth factor receptor family receptors in a variety of PCA specimens, cell lines, and benign prostatic hyperplasia. We found that erbB1, -2, and -3 are often coexpressed in prostate tissues, but not in erbB4. The information established here should provide a base line to study the possible growth and oncogenic signals of PCA.
Resumo:
Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles.
Resumo:
Treatment of chronic hepatitis B virus (HBV) infections with the reverse transcriptase inhibitor lamivudine leads to a rapid decline in plasma viremia and provides estimates for crucial kinetic constants of HBV replication. We find that in persistently infected patients, HBV particles are cleared from the plasma with a half-life of approximately 1.0 day, which implies a 50% daily turnover of the free virus population. Total viral release into the periphery is approximately 10(11) virus particles per day. Although we have no direct measurement of the infected cell mass, we can estimate the turnover rate of these cells in two ways: (i) by comparing the rate of viral production before and after therapy or (ii) from the decline of hepatitis B antigen during treatment. These two independent methods give equivalent results: we find a wide distribution of half-lives for virus-producing cells, ranging from 10 to 100 days in different patients, which may reflect differences in rates of lysis of infected cells by immune responses. Our analysis provides a quantitative understanding of HBV replication dynamics in vivo and has implications for the optimal timing of drug treatment and immunotherapy in chronic HBV infection. This study also represents a comparison for recent findings on the dynamics of human immunodeficiency virus (HIV) infection. The total daily production of plasma virus is, on average, higher in chronic HBV carriers than in HIV-infected patients, but the half-life of virus-producing cells is much shorter in HIV. Most strikingly, there is no indication of drug resistance in HBV-infected patients treated for up to 24 weeks.
Resumo:
The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.
Resumo:
In this study, we describe the interaction between cytokine and cytokine receptor (R) for the activation and proliferation of gamma delta T-cell receptor-positive T cells (gamma delta T cells). gamma delta T cells isolated from murine intestinal intraepithelial lymphocytes (IELs) were separated into gamma delta (Dim) and gamma delta (Bright) fractions according to the intensity of gamma delta T-cell receptor expression. The gamma delta T cells express low levels of IL-2R and IL-7R as shown by flow cytometry and reverse transcriptase-PCR analysis, whereas gamma delta (Bright) T cells did not express either receptor. Our study also revealed that recombinant marine (rm)IL-2 and rmIL-7 reciprocally induced high expressions of IL-7R and IL-2R, respectively, on gamma delta (Dim) T cells but not on gamma delta (Bright) cells. Thus, treatment of gamma delta (Dim) T cells with rmIL-2 and rmIL-7 resulted in high proliferative responses, whereas gamma delta (Bright) T cells did not respond to these two cytokines. The sources of these two cytokines for gamma delta T cells were neighboring epithelial cells (IL-7) and alpha beta T cells (IL-2 and IL-7). Cytokine signaling by IL-2 and IL-7 from alpha beta T cells and epithelial cells was necessary for the expression of IL-7R and IL-2R, respectively, on a subset of gamma delta T cells (e.g., gamma delta (Dim) T cells) in mucosa-associated tissue for subsequent activation and cell division.
Resumo:
A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.
Resumo:
Testicular germ cell tumors are the most common form of cancer in young adult males. They result from a derangement of primordial germ cells, and they grow out from a noninvasive carcinoma-in-situ precursor. Since carcinoma in situ can readily be cured by low-dose irradiation, there is a great incentive for non- or minimally invasive methods for detection of carcinoma in situ. We have recently shown that human Tera-2 embryonal carcinoma cells, obtained from a nonseminomatous testicular germ cell tumor, show alternative splicing and alternative promoter use of the platelet-derived growth factor alpha-receptor gene, giving rise to a unique 1.5-kb transcript. In this study we have set up a reverse transcriptase-polymerase chain reaction strategy for characterization of the various transcripts for this receptor. Using this technique, we show that a panel of 18 seminomas and II nonseminomatous testicular germ cell tumors all express the 1.5-kb transcript. In addition, a panel of 27 samples of testis parenchyma with established carcinoma in situ were all found to be positive for the 1.5-kb transcript, while parenchyma lacking carcinoma in situ, placenta, and control semen were all negative. These data show that the 1.5-kb platelet-derived growth factor alpha-receptor transcript can be used as a highly selective marker for detection of early stages of human testicular germ cell tumors.
Resumo:
Joining (J) chain is a component of polymeric, but not monomeric, immunoglobulin (Ig) molecules and may play a role in their polymerization and transport across epithelial cells. To date, study of the J chain has been confined to vertebrates that produce Ig and in which the J chain displays a considerable degree of structural homology. The role of the J chain in Ig polymerization has been questioned and, since the J chain can be expressed in lymphoid cells that do not produce Ig, it is possible that the J chain may have other functions. To explore this possibility, we have surveyed J-chain gene, mRNA, and protein expression by using reverse transcriptase-coupled PCR, Northern blot analysis, and immunoblot analysis in invertebrate species that do not produce Ig. We report that the J-chain gene is expressed in invertebrates (Mollusca, Annelida, Arthropoda, Echinodermata, and Holothuroidea), as well as in representative vertebrates (Mammalia, Teleostei, Amphibia). Furthermore, J-chain cDNA from the earthworm has a high degree of homology (68-76%) to human, mouse, and bovine J chains. Immunohistochemical studies reveal that the J chain is localized in the mucous cells of body surfaces, intestinal epithelial cells, and macrophage-like cells of the earthworm and slug. This study suggests that the J chain is a primitive polypeptide that arose before the evolution of Ig molecules and remains highly conserved in extent invertebrates and vertebrates.
Resumo:
Eph and its homologues form the largest subfamily of receptor tyrosine kinases. Normal expression patterns of this subfamily indicate roles in differentiation and development, whereas their overexpression has been linked to oncogenesis. This study investigated the potential role of Eph-related molecules during very early embryonic development by examining their expression in embryonic stem (ES) cells and embryoid bodies differentiated from ES cells in vitro. By use of a strategy based on reverse transcriptase-mediated PCR, nine clones containing Eph-subfamily sequence were isolated from ES cells. Of these, eight were almost identical to one of four previously identified molecules (Sek, Nuk, Eck, and Mek4). However, one clone contained sequence from a novel Eph-subfamily member, which was termed embryonic stem-cell kinase or Esk. Northern analysis showed expression of Esk in ES cells, embryoid bodies, day 12 mouse embryos, and some tissues of the adult animal. Levels of expression were similar in ES cells and embryoid bodies. By comparison, Mek4 showed no significant transcription in the ES cell cultures by Northern analysis, whereas Eck displayed stronger signals in ES cells than in the embryoid bodies. These results suggest that Eph-subfamily molecules may play roles during the earliest phases of embryogenesis. Furthermore, the relative importance of different members of this subfamily appears to change as development proceeds.
Resumo:
Nitric oxide (NO) has been implicated as a pathogenic mediator in a variety of central nervous system (CNS) disease states, including the animal model of multiple sclerosis (MS) and experimental allergic encephalomyelitis. We have examined post-mortem brain tissues collected from patients previously diagnosed with MS, as well as tissues collected from the brains of patients dying without neuropathies. Both Northern blot analysis and reverse transcriptase (RT)-driven in situ PCR (RT-in situ PCR) studies demonstrated that inducible NO synthase (iNOS) mRNA was present in the brain tissues from MS patients but was absent in equivalent tissues from normal controls. We have also performed experiments identifying the cell type responsible for iNOS expression by RT-in situ PCR in combination with immunohistochemistry. Concomitantly, we analyzed the tissues for the presence of the NO reaction product nitrotyrosine to demonstrate the presence of a protein nitrosylation adduct. We report here that iNOS mRNA was detectable in the brains of 100% of the CNS tissues from seven MS patients examined but in none of the three normal brains. RT-in situ PCR experiments also demonstrated the presence of iNOS mRNA in the cytoplasm of cells that also expressed the ligand recognized by the Ricinus communis agglutinin 1 (RCA-1), a monocyte/macrophage lineage marker. Additionally, specific labeling of cells was observed when brain tissues from MS patients were exposed to antisera reactive with nitrotyrosine residues but was significantly less plentiful in brain tissue from patients without CNS disease. These results demonstrate that iNOS, one of the enzymes responsible for the production of NO, is expressed at significant levels in the brains of patients with MS and may contribute to the pathology associated with the disease.
Resumo:
Enzymatic incorporation of 2',3'-dideoxynucleotides into DNA results in chain termination. We report that 3'-esterified 2'-deoxynucleoside 5'-triphosphates (dNTPs) are false chain-terminator substrates since DNA polymerases, including human immunodeficiency virus reverse transcriptase, can incorporate them into DNA and, subsequently, use this new 3' end to insert the next correctly paired dNTP. Likewise, a DNA substrate with a primer chemically esterified at the 3' position can be extended efficiently upon incubation with dNTPs and T7 DNA polymerase lacking 3'-to-5' exonuclease activity. This enzyme is also able to use dTTP-bearing reporter groups in the 3' position conjugated through amide or thiourea bonds and cleave them to restore a DNA chain terminated by an amino group at the 3' end. Hence, a number of DNA polymerases exhibit wide catalytic versatility at the 3' end of the nascent DNA strand. As part of the polymerization mechanism, these capabilities extend the number of enzymatic activities associated with these enzymes and also the study of interactions between DNA polymerases and nucleotide analogues.
Resumo:
Osteoblasts express calcium channels that are thought to be involved in the transduction of extracellular signals regulating bone metabolism. The molecular identity of the pore-forming subunit (alpha 1) of L-type calcium channel(s) was determined in rat osteosarcoma UMR-106 cells, which express an osteoblast phenotype. A homology-based reverse transcriptase-polymerase chain reaction cloning strategy was employed that used primers spanning the fourth domain. Three types of cDNAs were isolated, corresponding to the alpha 1S (skeletal), alpha 1C (cardiac), and alpha 1D (neuroendocrine) isoforms. In the transmembrane segment IVS3 and the extracellular loop formed by the IVS3-S4 linker, a single pattern of mRNA splicing was found that occurs in all three types of calcium channel transcripts. Northern blot analysis revealed an 8.6-kb mRNA that hybridized to the alpha 1C probe and 4.8- and 11.7-kb mRNAs that hybridized to the alpha 1S and alpha 1D probes. Antisense oligonucleotides directed to the calcium channel alpha 1D transcript, but not those directed to alpha 1S or alpha 1C transcripts, inhibited the rise of intracellular calcium induced by parathyroid hormone. However, alpha 1D antisense oligonucleotides had no effect on the accumulation of cAMP induced by parathyroid hormone. When L-type calcium channels were activated with Bay K 8644, antisense oligonucleotides to each of the three isoforms partially inhibited the rise of intracellular calcium. The present results provide evidence for the expression of three distinct calcium channel alpha 1-subunit isoforms in an osteoblast-like cell line. We conclude that the alpha 1D isoform is selectively activated by parathyroid hormone.
Resumo:
Overlapping cDNA clones spanning the entire coding region of a Na-channel alpha subunit were isolated from cultured Schwann cells from rabbits. The coding region predicts a polypeptide (Nas) of 1984 amino acids exhibiting several features characteristic of Na-channel alpha subunits isolated from other tissues. Sequence comparisons showed that the Nas alpha subunit resembles most the family of Na channels isolated from brain (approximately 80% amino acid identity) and is least similar (approximately 55% amino acid identity) to the atypical Na channel expressed in human heart and the partial rat cDNA, NaG. As for the brain II and III isoforms, two variants of Nas exist that appear to arise by alternative splicing. The results of reverse transcriptase-polymerase chain reaction experiments suggest that expression of Nas transcripts is restricted to cells in the peripheral and central nervous systems. Expression was detected in cultured Schwann cells, sciatic nerve, brain, and spinal cord but not in skeletal or cardiac muscle, liver, kidney, or lung.
Resumo:
A plant lignan, 3'-O-methyl nordihydroguaiaretic acid (3'-O-methyl NDGA, denoted Malachi 4:5-6 or Mal.4; molecular weigth 316), was isolated from Larrea tridentata and found to be able to inhibit human immunodeficiency virus (HIV) Tat-regulated transactivation in vivo, induce protection of lymphoblastoid CEM-SS cells from HIV (strain IIIB) killing, and suppress the replication of five HIV-1 strains (WM, MN, VS, JR-CSF, and IIIB) in mitogen-stimulated peripheral blood mononuclear cells, all in a dose-dependent manner. Mal.4 inhibits both basal transcription and Tat-regulated transactivation in vitro. The target of Mal.4 has been localized to nucleotides -87 to -40 of the HIV long terminal repeat. Mal.4 directly and specifically interferes with the binding of Sp1 to Sp1 sites in the HIV long terminal repeat. By inhibiting proviral expression, Mal.4 may be able to interrupt the life cycles of both wild-type and reverse transcriptase or protease mutant viruses in HIV-infected patients.
Resumo:
Chronic rejection, the most important cause of long-term graft failure, is thought to result from both alloantigen-dependent and -independent factors. To examine these influences, cytokine dynamics were assessed by semiquantitative competitive reverse transcriptase-PCR and by immunohistology in an established rat model of chronic rejection lf renal allografts. Isograft controls develop morphologic and immunohistologic changes that are similar to renal allograft changes, although quantitatively less intense and at a delayed speed; these are thought to occur secondary to antigen-independent events. Sequential cytokine expression was determined throughout the process. During an early reversible allograft rejection episode, both T-cell associated [interleukin (IL) 2, IL-2 receptor, IL-4, and interferon gamma] and macrophage (IL-1 alpha, tumor necrosis factor alpha, and IL-6) products were up-regulated despite transient immunosuppression. RANTES (regulated upon activation, normal T-cell expressed and secreted) peaked at 2 weeks; intercellular adhesion molecule (ICAM-1) was maximally expressed at 6 weeks. Macrophage products such as monocyte chemoattractant protein (MCP-1) increased dramatically (to 10 times), presaging intense peak macrophage infiltration at 16 weeks. In contrast, in isografts, ICAM-1 peaked at 24 weeks. MCP-1 was maximally expressed at 52 weeks, commensurate with a progressive increase in infiltrating macrophages. Cytokine expression in the spleen of allograft and isograft recipients was insignificant. We conclude that chronic rejection of kidney allografts in rats is predominantly a local macrophage-dependent event with intense up-regulation of macrophage products such as MCP-1, IL-6, and inducible nitric oxide synthase. The cytokine expression in isografts emphasizes the contribution of antigen-independent events. The dynamics of RANTES expression between early and late phases of chronic rejection suggest a key role in mediating the events of the chronic process.