758 resultados para rakennusala, construction industry
Resumo:
Fiber-reinforced concrete is a composite material consisting of discrete, discontinuous, and uniformly distributed fibers in plain concrete primarily used to enhance the tensile properties of the concrete. FRC performance depends upon the fiber, interface, and matrix properties. The use of fiber-reinforced concrete has been increasing substantially in the past few years in different fields of the construction industry such as ground-level application in sidewalks and building floors, tunnel lining, aircraft parking, runways, slope stabilization, etc. Many experiments have been performed to observe the short-term and long-term mechanical behavior of fiber-reinforced concrete in the last decade and numerous numerical models have been formulated to accurately capture the response of fiber-reinforced concrete. The main purpose of this dissertation is to numerically calibrate the short-term response of the concrete and fiber parameters in mesoscale for the three-point bending test and cube compression test in the MARS framework which is based on the lattice discrete particle model (LDPM) and later validate the same parameters for the round panels. LDPM is the most validated theory in mesoscale theories for concrete. Different seeds representing the different orientations of concrete and fiber particles are simulated to produce the mean numerical response. The result of numerical simulation shows that the lattice discrete particle model for fiber-reinforced concrete can capture results of experimental tests on the behavior of fiber-reinforced concrete to a great extent.
Resumo:
View of post being hoisted into position during construction.
Resumo:
In the present paper we analyzed the behavior of firms in the construction and manufacturing sectors, located in the region of Vale do Sousa, in the north of Portugal. From the literature, even existing some disagreements, it is possible to conclude that planning is crucial for firms survival and growth. Cooperation is another aspect that the literature presents as an important factor for firms sustainability. It also plays a major role in competition, since firms are adopting coopetition strategies. By studying a sample of 251 firms, it was possible to realize, that the majority started their business without a formal planning, and they keep going without using it. In cooperation aspects, there is a lack of cooperation. It was possible to verify, that existing cooperation has some evidence but at a vertical level. These vertical relations were also identified in stakeholder’s involvement.
Resumo:
The present study is focused on the analysis of the three main governmental measures occurred in 2000-2006 in Russian defense industry: the creation of the holding structures, the establishing of the state monopoly in arms export, and creation of the United Aviation Construction Corporation (Ob¿edinennaya Aviastroitel¿naya Corporatziya), which was initiated by the President and Government of Russian Federation in 2006. The last project assumes the consolidation and joining of all producers of civil and military aviation into one united corporation in order to save the technological and productive potential of the sector after serious crisis in 1990-s. On the other hand, this project can be considered as one of the measures to establish state control and hierarchy in the defense industry. The current project tries to analyze the necessity and the possible impacts of restructuring processes. In order to perform such analysis, I need to observe the evolution of the sector, which involves the description of the restructuring and reforming of the industry since the disintegration of the Soviet Union. The current situation in aviation sector was shaped by number of reforms performed by Government of Russian Federation, which I describe in phases: conversion, privatization, decentralization, followed by evident desire of the state to establish control over some companies. Later on, I am trying to understand the reasons lying behind all reforms of 2000-2006 and the integration of the industry. I also try to predict which impacts on the companies it will have. The last part presents the main conclusions of the paper.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aim at the production of panels made from industrial waste -thermoplastic (polypropylene; polyethylene and acrylonitrile butadiene styrene) reinforced with agro-industrial waste - peach palm waste (shells and sheaths). The properties of the panels like density, thickness swelling, water absorption and moisture content were evaluated using the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. Good results were obtained with formulations of 100% plastic waste; 70% waste plastics and 30% peach palm waste; and 60% waste plastics and 40% peach palm waste.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aims at the production of panels made from industrial waste -thermoplastic (Polypropylene - PP; Polyethylene - PE and Acrylonitrile Butadiene Styrene - ABS) reinforced with agro-industrial waste - pupunha palm waste (shells and sheaths). The properties of the panels were evaluated: density, thickness swelling, water absorption and moisture content. It was used the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. The best results in physical tests were treatments 1 (100% waste plastic), 6 (60% plastic waste and 40% waste of pupunha) and 7 (70% waste plastic and 30% waste of pupunha). The best results in the mechanical tests were treatments 3 (30% de residuos plasticos e 70% de residuos da pupunha), 4 (40% de residuos plasticos c 60% de residuos da pupunha) and 5 (50% de residuos plasticos e 50% de residuos da pupunha). For mechanical tests it was concluded that the results of modulus of rupture and of modulus of elasticity the best treatments were those with more fibers. In the tensile tests perpendicular to the surface, it is clear that using more waste plastics leads to the best results. It was concluded that the waste can be used as raw material for the production of alternative materials mainly in civil construction and furniture industries, and it can be employed in urban or rural environment, given the concept of eco-efficient products.