993 resultados para quantum well electrodes
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
We present a novel method of performing quantum logic gates in trapped ion quantum computers which does not require the ions to be cooled down to the ground state of their vibrational modes, thereby avoiding one of the principal experimental difficulties encountered in realizing this technology. Our scheme employs adiabatic passages and a phase shift conditional on the phonon number state.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
We use a quantum master equation to describe transport in double-dot devices. The coherent dot-to-dot coupling affects the noise spectra strongly. For phonon-assisted tunneling, the calculated current spectra are consistent with those of experiments. The model shows that quantum stochastic theory may he applied to some advantage in mesoscopic electronic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.
Resumo:
We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.
Resumo:
Background. The Australian National Survey of Mental Health and Well-being was designed to detect and describe psychiatric morbidity, associated disability, service use and perceived need for care. The survey employed a single-phase interview methodology, delivering a field questionnaire to a clustered probability sample of 10641 Australians. Perceived need was sampled with an instrument designed for this survey, the Perceived Need for Care Questionnaire (PNCQ). This questionnaire gathers information about five categories of perceived need, assigning each to one of four levels of perceived need. Reliability and validity studies showed satisfactory performance of the instrument. Methods. Perceived need for mental health care in the Australian population has been analysed using PNCQ data, relating this to diagnostic and service utilization data from the above survey. Results. The survey findings indicate that an estimated 13.8 % of the Australian population have perceived need for mental health care. Those who met interview criteria for a psychiatric diagnosis and also expressed perceived need make up 9.9 % of the population. An estimated 11.0% of the population are cases of untreated prevalence, a minority (3.6% of the population) of whom expressed perceived need for mental health care. Among persons using services, those without a psychiatric diagnosis based on interview criteria (4.4% of the population), showed high levels of perceived met need. Conclusions. The overall rate of perceived need found by this methodology lies between those found in the USA and Canada. The findings suggest that service use in the absence of diagnosis elicited by survey questionnaires may often represent successful intervention. In the survey, untreated prevalence was commonly not accompanied by perceived need for mental health care.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
OBJECTIVE: To explore relationships between body mass index (BMI, kg/m(2)) and indicators of health and well-being in young Australian women. DESIGN: Population based cohort study-baseline cross sectional data. SUBJECTS: 14,779 women aged 18-23 who participated in the baseline survey of the Australian Longitudinal Study on Women's Health in 1996. MEASUREMENTS: Self-reported height, weight, medical conditions, symptoms and SF-36. RESULTS: The majority of women (68%) had a BMI in the range 18.5-
Resumo:
Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.