934 resultados para quantization noise
Resumo:
Road-traffic noise impairs the well-being and health of many people. Motivating car drivers to voluntarily adopt a low-noise driving style (i.e., eco-driving) contributes to the reduction of road-traffic noise, complementary to requirements, bans, and laws. In a field study with employees of a municipality (N = 88), we investigated the effects of an intervention on car drivers’ motivation to prevent road-traffic noise, motivation to practice eco-driving, and driving behavior. The intervention consisted of a leaflet intended to enhance participants’ motivation, a practical eco-driving course, and weekly driving-performance feedbacks. We used a switching-replications design with two intervention groups. In both groups, eco-driving behavior was significantly strengthened by the intervention. The effects on the motivational variables were significant in only one of the groups (however, it should be noted that the average motivation was already relatively high before the intervention). For one of the groups, the study design allowed testing for the effects at an additional follow-up assessment (4 months after the intervention). The results showed that the intervention effect on driving behavior held across this period. The findings of the present research suggest that it is possible to improve car driver’s behavior with regard to a low-noise driving style.
Resumo:
OBJECTIVE To evaluate the speech intelligibility in noise with a new cochlear implant (CI) processor that uses a pinna effect imitating directional microphone system. STUDY DESIGN Prospective experimental study. SETTING Tertiary referral center. PATIENTS Ten experienced, unilateral CI recipients with bilateral severe-to-profound hearing loss. INTERVENTION All participants performed speech in noise tests with the Opus 2 processor (omnidirectional microphone mode only) and the newer Sonnet processor (omnidirectional and directional microphone mode). MAIN OUTCOME MEASURE The speech reception threshold (SRT) in noise was measured in four spatial settings. The test sentences were always presented from the front. The noise was arriving either from the front (S0N0), the ipsilateral side of the CI (S0NIL), the contralateral side of the CI (S0NCL), or the back (S0N180). RESULTS The directional mode improved the SRTs by 3.6 dB (p < 0.01), 2.2 dB (p < 0.01), and 1.3 dB (p < 0.05) in the S0N180, S0NIL, and S0NCL situations, when compared with the Sonnet in the omnidirectional mode. There was no statistically significant difference in the S0N0 situation. No differences between the Opus 2 and the Sonnet in the omnidirectional mode were observed. CONCLUSION Speech intelligibility with the Sonnet system was statistically different to speech recognition with the Opus 2 system suggesting that CI users might profit from the pinna effect imitating directionality mode in noisy environments.
Resumo:
Noise peaks are powerful distractors. This study focuses on the impact of noise peaks on surgical teams' communication during 109 long abdominal surgeries. We related measured noise peaks during 5-min intervals to the amount of observed communication during the same interval. Results show that noise peaks are associated with less case-relevant communication; this effect is moderated by the level of surgical experience; case-relevant communications decrease under high noise peak conditions among junior, but not among senior surgeons. However, case-irrelevant communication did not decrease under high noise level conditions, rather there was a trend to more case-irrelevant communication under high noise peaks. The results support the hypothesis that noise peaks impair communication because they draw on attentional resources rather than impairing understanding of communication. As case-relevant communication is important for surgical performance, exposure to high noise peaks in the OR should be minimised especially for less experienced surgeons. Practitioner Summary: This study investigated whether noise during surgeries influenced the communication within surgical teams. During abdominal surgeries, noise levels were measured and communication was observed. Results showed that high noise peaks reduced the frequency of patient-related communication, but did not reduce patient-irrelevant communication. Noise may negatively affect team coordination in surgeries.
Resumo:
Objective. Loud noises in neonatal intensive care units (NICUs) may impede growth and development for extremely low birthweight (ELBW, < 1000 grams) newborns. The objective of this study was to measure the association between NICU sound levels and ELBW neonates' arterial blood pressure to determine whether these newborns experience noise-induced stress. ^ Methods. Noise and arterial blood pressure recordings were collected for 9 ELBW neonates during the first week of life. Sound levels were measured inside the incubator, and each subject's arterial blood pressures were simultaneously recorded for 15 minutes (at 1 sec intervals). Time series cross-correlation functions were calculated for NICU noise and mean arterial blood pressure (MABP) recordings for each subject. The grand mean noise-MABP cross-correlation was calculated for all subjects and for lower and higher birthweight groups for comparison. ^ Results. The grand mean noise-MABP cross-correlation for all subjects was mostly negative (through 300 sec lag time) and nearly reached significance at the 95% level at 111 sec lag (mean r = -0.062). Lower birthweight newborns (454-709 g) experienced significant decreases in blood pressure with increasing NICU noise after 145 sec lag (peak r = -0.074). Higher birthweight newborns had an immediate negative correlation with NICU sound levels (at 3 sec lag, r = -0.071), but arterial blood pressures increased to a positive correlation with noise levels at 197 sec lag (r = 0.075). ^ Conclusions. ELBW newborns' arterial blood pressure was influenced by NICU noise levels during the first week of life. Lower birthweight newborns may have experienced an orienting reflex to NICU sounds. Higher birthweight newborns experienced an immediate orienting reflex to increasing sound levels, but arterial blood pressure increased approximately 3 minutes after increases in noise levels. Increases in arterial blood pressure following increased NICU sound levels may result from a stress response to noise. ^
Combined impacts of elevated CO2 and anthropogenic noise on European sea bass (Dicentrarchus labrax)
Resumo:
Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.
Resumo:
A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar near-field, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data.
Resumo:
Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment.