859 resultados para programming Task
Resumo:
La tâche de kinématogramme de points aléatoires est utilisée avec le paradigme de choix forcé entre deux alternatives pour étudier les prises de décisions perceptuelles. Les modèles décisionnels supposent que les indices de mouvement pour les deux alternatives sont encodés dans le cerveau. Ainsi, la différence entre ces deux signaux est accumulée jusqu’à un seuil décisionnel. Cependant, aucune étude à ce jour n’a testé cette hypothèse avec des stimuli contenant des mouvements opposés. Ce mémoire présente les résultats de deux expériences utilisant deux nouveaux stimuli avec des indices de mouvement concurrentiels. Parmi une variété de combinaisons d’indices concurrentiels, la performance des sujets dépend de la différence nette entre les deux signaux opposés. De plus, les sujets obtiennent une performance similaire avec les deux types de stimuli. Ces résultats supportent un modèle décisionnel basé sur l’accumulation des indices de mouvement net et suggèrent que le processus décisionnel peut intégrer les signaux de mouvement à partir d’une grande gamme de directions pour obtenir un percept global de mouvement.
Resumo:
Bien que le passage du temps altère le cerveau, la cognition ne suit pas nécessairement le même destin. En effet, il existe des mécanismes compensatoires qui permettent de préserver la cognition (réserve cognitive) malgré le vieillissement. Les personnes âgées peuvent utiliser de nouveaux circuits neuronaux (compensation neuronale) ou des circuits existants moins susceptibles aux effets du vieillissement (réserve neuronale) pour maintenir un haut niveau de performance cognitive. Toutefois, la façon dont ces mécanismes affectent l’activité corticale et striatale lors de tâches impliquant des changements de règles (set-shifting) et durant le traitement sémantique et phonologique n’a pas été extensivement explorée. Le but de cette thèse est d’explorer comment le vieillissement affecte les patrons d’activité cérébrale dans les processus exécutifs d’une part et dans l’utilisation de règles lexicales d’autre part. Pour cela nous avons utilisé l’imagerie par résonance magnétique fonctionnelle (IRMf) lors de la performance d’une tâche lexicale analogue à celle du Wisconsin. Cette tâche a été fortement liée à de l’activité fronto-stritale lors des changements de règles, ainsi qu’à la mobilisation de régions associées au traitement sémantique et phonologique lors de décisions sémantiques et phonologiques, respectivement. Par conséquent, nous avons comparé l’activité cérébrale de jeunes individus (18 à 35 ans) à celle d’individus âgés (55 à 75 ans) lors de l’exécution de cette tâche. Les deux groupes ont montré l’implication de boucles fronto-striatales associées à la planification et à l’exécution de changements de règle. Toutefois, alors que les jeunes semblaient activer une « boucle cognitive » (cortex préfrontal ventrolatéral, noyau caudé et thalamus) lorsqu’ils se voyaient indiquer qu’un changement de règle était requis, et une « boucle motrice » (cortex postérieur préfrontal et putamen) lorsqu’ils devaient effectuer le changement, les participants âgés montraient une activation des deux boucles lors de l’exécution des changements de règle seulement. Les jeunes adultes tendaient à présenter une augmentation de l’activité du cortex préfrontal ventrolatéral, du gyrus fusiforme, du lobe ventral temporale et du noyau caudé lors des décisions sémantiques, ainsi que de l’activité au niveau de l’aire de Broca postérieur, de la junction temporopariétale et du cortex moteur lors de décisions phonologiques. Les participants âgés ont montré de l’activité au niveau du cortex préfrontal latéral et moteur durant les deux types de décisions lexicales. De plus, lorsque les décisions sémantiques et phonologiques ont été comparées entre elles, les jeunes ont montré des différences significatives au niveau de plusieurs régions cérébrales, mais pas les âgés. En conclusion, notre première étude a montré, lors du set-shifting, un délai de l’activité cérébrale chez les personnes âgées. Cela nous a permis de conceptualiser l’Hypothèse Temporelle de Compensation (troisième manuscrit) qui consiste en l’existence d’un mécanisme compensatoire caractérisé par un délai d’activité cérébrale lié au vieillissement permettant de préserver la cognition au détriment de la vitesse d’exécution. En ce qui concerne les processus langagiers (deuxième étude), les circuits sémantiques et phonologiques semblent se fusionner dans un seul circuit chez les individus âgés, cela représente vraisemblablement des mécanismes de réserve et de compensation neuronales qui permettent de préserver les habilités langagières.
Resumo:
La maladie de Parkinson (PD) a été uniquement considérée pour ses endommagements sur les circuits moteurs dans le cerveau. Il est maintenant considéré comme un trouble multisystèmique, avec aspects multiples non moteurs y compris les dommages intérêts pour les circuits cognitifs. La présence d’un trouble léger de la cognition (TCL) de PD a été liée avec des changements structurels de la matière grise, matière blanche ainsi que des changements fonctionnels du cerveau. En particulier, une activité significativement réduite a été observée dans la boucle corticostriatale ‘cognitive’ chez des patients atteints de PD-TCL vs. PD non-TCL en utilisant IRMf. On sait peu de cours de ces modèles fonctionnels au fil du temps. Dans cette étude, nous présentons un suivi longitudinal de 24 patients de PD non démente qui a subi une enquête neuropsychologique, et ont été séparés en deux groupes - avec et sans TCL (TCL n = 11, non-TCL n = 13) en fonction du niveau 2 des recommandations de la Movement Disrders Society pour le diagnostic de PD-TCL. Ensuite, chaque participant a subi une IRMf en effectuant la tâche de Wisconsin pendant deux sessions, 19 mois d'intervalle. Nos résultats longitudinaux montrent qu'au cours de la planification de période de la tâche, les patients PD non-TCL engageant les ressources normales du cortex mais ils ont activé en plus les zones corticales qui sont liés à la prise de décision tel que cortex médial préfrontal (PFC), lobe pariétal et le PFC supérieure, tandis que les PD-TCL ont échoué pour engager ces zones en temps 2. Le striatum n'était pas engagé pour les deux groupes en temps 1 et pour le groupe TCL en temps 2. En outre, les structures médiales du lobe temporal étaient au fil du temps sous recrutés pour TCL et Non-TCL et étaient positivement corrélés avec les scores de MoCA. Le cortex pariétal, PFC antérieur, PFC supérieure et putamen postérieur étaient négativement corrélés avec les scores de MoCA en fil du temps. Ces résultats révèlent une altération fonctionnelle pour l’axe ganglial-thalamo-corticale au début de PD, ainsi que des niveaux différents de participation corticale pendant une déficience cognitive. Cette différence de recrutement corticale des ressources pourrait refléter longitudinalement des circuits déficients distincts de trouble cognitive légère dans PD.
Resumo:
Background: Routine screening of scoliosis is a controversial subject and screening efforts vary greatly around the world. METHODS: Consensus was sought among an international group of experts (seven spine surgeons and one clinical epidemiologist) using a modified Delphi approach. The consensus achieved was based on careful analysis of a recent critical review of the literature on scoliosis screening, performed using a conceptual framework of analysis focusing on five main dimensions: technical, clinical, program, cost and treatment effectiveness. FINDINGS: A consensus was obtained in all five dimensions of analysis, resulting in 10 statements and recommendations. In summary, there is scientific evidence to support the value of scoliosis screening with respect to technical efficacy, clinical, program and treatment effectiveness, but there insufficient evidence to make a statement with respect to cost effectiveness. Scoliosis screening should be aimed at identifying suspected cases of scoliosis that will be referred for diagnostic evaluation and confirmed, or ruled out, with a clinically significant scoliosis. The scoliometer is currently the best tool available for scoliosis screening and there is moderate evidence to recommend referral with values between 5 degrees and 7 degrees. There is moderate evidence that scoliosis screening allows for detection and referral of patients at an earlier stage of the clinical course, and there is low evidence suggesting that scoliosis patients detected by screening are less likely to need surgery than those who did not have screening. There is strong evidence to support treatment by bracing. INTERPRETATION: This information statement by an expert panel supports scoliosis screening in 4 of the 5 domains studied, using a framework of analysis which includes all of the World Health Organisation criteria for a valid screening procedure.
Resumo:
The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
In order to minimize the risk of failures or major renewals of hull structures during the ship's expected life span, it is imperative that the precaution must be taken with regard to an adequate margin of safety against any one or combination of failure modes including excessive yielding, buckling, brittle fracture, fatigue and corrosion. The most efficient system for combating underwater corrosion is 'cathodic protection'. The basic principle of this method is that the ship's structure is made cathodic, i.e. the anodic (corrosion) reactions are suppressed by the application of an opposing current and the ship is there by protected. This paper deals with state of art in cathodic protection and its programming in ship structure
Resumo:
Sowohl die Ressourcenproblematik als auch die drohenden Ausmaße der Klimaänderung lassen einen Umstieg auf andere Energiequellen langfristig unausweichlich erscheinen und mittelfristig als dringend geboten. Unabhängig von der Frage, auf welchem Niveau sich der Energiebedarf stabilisieren lässt, bleibt dabei zu klären, welche Möglichkeiten sich aus technischer und wirtschaftlicher Sicht in Zukunft zur Deckung unseres Energiebedarfs anbieten. Eine aussichtsreiche Option besteht in der Nutzung regenerativer Energien in ihrer ganzen Vielfalt. Die Arbeit "Szenarien zur zukünftigen Stromversorgung, kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien" konzentriert sich mit der Stromversorgung auf einen Teilaspekt der Energieversorgung, der zunehmend an Wichtigkeit gewinnt und als ein Schlüssel zur nachhaltigen Energieversorgung interpretiert werden kann. Die Stromversorgung ist heute weltweit für etwa die Hälfte des anthropogenen CO2-Ausstoßes verantwortlich. In dieser Arbeit wurden anhand verschiedener Szenarien Möglichkeiten einer weitgehend CO2–neutralen Stromversorgung für Europa und seine nähere Umgebung untersucht, wobei das Szenariogebiet etwa 1,1 Mrd. Einwohner und einen Stromverbrauch von knapp 4000 TWh/a umfasst. Dabei wurde untersucht, wie die Stromversorgung aufgebaut sein sollte, damit sie möglichst kostengünstig verwirklicht werden kann. Diese Frage wurde beispielsweise für Szenarien untersucht, in denen ausschließlich heute marktverfügbare Techniken berücksichtigt wurden. Auch der Einfluss der Nutzung einiger neuer Technologien, die bisher noch in Entwicklung sind, auf die optimale Gestaltung der Stromversorgung, wurde anhand einiger Beispiele untersucht. Die Konzeption der zukünftigen Stromversorgung sollte dabei nach Möglichkeit objektiven Kriterien gehorchen, die auch die Vergleichbarkeit verschiedener Versorgungsansätze gewährleisten. Dafür wurde ein Optimierungsansatz gewählt, mit dessen Hilfe sowohl bei der Konfiguration als auch beim rechnerischen Betrieb des Stromversorgungssystems weitgehend auf subjektive Entscheidungsprozesse verzichtet werden kann. Die Optimierung hatte zum Ziel, für die definierte möglichst realitätsnahe Versorgungsaufgabe den idealen Kraftwerks- und Leitungspark zu bestimmen, der eine kostenoptimale Stromversorgung gewährleistet. Als Erzeugungsoptionen werden dabei u.a. die Nutzung Regenerativer Energien durch Wasserkraftwerke, Windenergiekonverter, Fallwindkraftwerke, Biomassekraftwerke sowie solare und geothermische Kraftwerke berücksichtigt. Abhängig von den gewählten Randbedingungen ergaben sich dabei unterschiedliche Szenarien. Das Ziel der Arbeit war, mit Hilfe unterschiedlicher Szenarien eine breite Basis als Entscheidungsgrundlage für zukünftige politische Weichenstellungen zu schaffen. Die Szenarien zeigen Optionen für eine zukünftige Gestaltung der Stromversorgung auf, machen Auswirkungen verschiedener – auch politischer – Rahmenbedingungen deutlich und stellen so die geforderte Entscheidungsgrundlage bereit. Als Grundlage für die Erstellung der Szenarien mussten die verschiedenen Potentiale erneuerbarer Energien in hoher zeitlicher und räumlicher Auflösung ermittelt werden, mit denen es erstmals möglich war, die Fragen einer großräumigen regenerativen Stromversorgung ohne ungesicherte Annahmen anhand einer verlässlichen Datengrundlage anzugehen. Auch die Charakteristika der verschiedensten Energiewandlungs- und Transportsysteme mussten studiert werden und sind wie deren Kosten und die verschiedenen Potentiale in der vorliegenden Arbeit ausführlich diskutiert. Als Ausgangsszenario und Bezugspunkt dient ein konservatives Grundszenario. Hierbei handelt es sich um ein Szenario für eine Stromversorgung unter ausschließlicher Nutzung erneuerbarer Energien, die wiederum ausschließlich auf heute bereits entwickelte Technologien zurückgreift und dabei für alle Komponenten die heutigen Kosten zugrundelegt. Dieses Grundszenario ist dementsprechend auch als eine Art konservative Worst-Case-Abschätzung für unsere Zukunftsoptionen bei der regenerativen Stromversorgung zu verstehen. Als Ergebnis der Optimierung basiert die Stromversorgung beim Grundszenario zum größten Teil auf der Stromproduktion aus Windkraft. Biomasse und schon heute bestehende Wasserkraft übernehmen den überwiegenden Teil der Backup-Aufgaben innerhalb des – mit leistungsstarker HGÜ (Hochspannungs–Gleichstrom–Übertragung) verknüpften – Stromversorgungsgebiets. Die Stromgestehungskosten liegen mit 4,65 €ct / kWh sehr nahe am heute Üblichen. Sie liegen niedriger als die heutigen Preisen an der Strombörse. In allen Szenarien – außer relativ teuren, restriktiv ”dezentralen” unter Ausschluss großräumig länderübergreifenden Stromtransports – spielt der Stromtransport eine wichtige Rolle. Er wird genutzt, um Ausgleichseffekte bei der dargebotsabhängigen Stromproduktion aus erneuerbaren Quellen zu realisieren, gute kostengünstige Potentiale nutzbar zu machen und um die Speicherwasserkraft sowie die dezentral genutzte Biomasse mit ihrer Speicherfähigkeit für großräumige Backup-Aufgaben zu erschließen. Damit erweist sich der Stromtransport als einer der Schlüssel zu einer kostengünstigen Stromversorgung. Dies wiederum kann als Handlungsempfehlung bei politischen Weichenstellungen interpretiert werden, die demnach gezielt auf internationale Kooperation im Bereich der Nutzung erneuerbarer Energien setzen und insbesondere den großräumigen Stromtransport mit einbeziehen sollten. Die Szenarien stellen detaillierte und verlässliche Grundlagen für wichtige politische und technologische Zukunftsentscheidungen zur Verfügung. Sie zeigen, dass bei internationaler Kooperation selbst bei konservativen Annahmen eine rein regenerative Stromversorgung möglich ist, die wirtschaftlich ohne Probleme zu realisieren wäre und verweisen den Handlungsbedarf in den Bereich der Politik. Eine wesentliche Aufgabe der Politik läge darin, die internationale Kooperation zu organisieren und Instrumente für eine Umgestaltung der Stromversorgung zu entwickeln. Dabei kann davon ausgegangen werden, dass nicht nur ein sinnvoller Weg zu einer CO2–neutralen Stromversorgung beschritten würde, sondern sich darüber hinaus ausgezeichnete Entwicklungsperspektiven für die ärmeren Nachbarstaaten der EU und Europas eröffnen.
Resumo:
This paper describes our plans to evaluate the present state of affairs concerning parallel programming and its systems. Three subprojects are proposed: a survey among programmers and scientists, a comparison of parallel programming systems using a standard set of test programs, and a wiki resource for the parallel programming community - the Parawiki. We would like to invite you to participate and turn these subprojects into true community efforts.
Resumo:
In this publication, we report on an online survey that was carried out among parallel programmers. More than 250 people worldwide have submitted answers to our questions, and their responses are analyzed here. Although not statistically sound, the data we provide give useful insights about which parallel programming systems and languages are known and in actual use. For instance, the collected data indicate that for our survey group MPI and (to a lesser extent) C are the most widely used parallel programming system and language, respectively.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.