967 resultados para plasminogen activator inhibitor 1
Resumo:
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
Resumo:
Ewing's sarcoma is a member of Ewing's family tumors (EFTs) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The EWS-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to EFT development. However, EWS-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are permissive for its putative oncogenic properties have not been discovered, hampering basic understanding of EFT biology. Here, we show that EWS-FLI-1 alone can transform primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of EFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWS-FLI-1 target genes. These observations provide the first identification of candidate primary cells from which EFTs originate and suggest that EWS-FLI-1 expression may constitute the initiating event in EFT pathogenesis.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.
Resumo:
To assess the role of vasopressin (AVP) in congestive heart failure (CHF), we investigated 10 patients with CHF refractory to conventional treatment, before and 60 minutes after intravenous administration of 5 micrograms/kg of d(CH2)5Tyr(Me)AVP, a specific antagonist of AVP at the vascular receptor level. Heart rate, systemic arterial pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac index by thermodilution, and cutaneous blood flow by laser-Doppler technique were measured. In 9 patients there was no significant hemodynamic and cutaneous blood flow response to the AVP antagonist. Plasma AVP was 2.3 +/- 0.8 pg/ml and plasma osmolality 284 +/- 14 mosm/kg H2O. The tenth patient had the most severe CHF. His plasma AVP was 55 pg/ml and plasma osmolality 290 mosm/kg. He responded to the AVP antagonist with a marked decrease in systemic arterial pressure from 115/61 to 79/41 mm Hg, in pulmonary arterial pressure from 58/31 to 33/13 mm Hg and in pulmonary capillary wedge pressure from 28 to 15 mm Hg. Simultaneously cardiac index increased from 1.1 to 2.21 X min-1 X m-2 and cutaneous blood flow rose 5-fold. Thus, most patients with CHF have only moderately elevated plasma AVP and its role in determining peripheral vascular resistance appears to be limited. AVP may become important in rare patients presenting with marked hemodynamic instability and very high plasma AVP.
Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs
Resumo:
Schistosoma mansoni soluble egg antigens (SEA) were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8) presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2), which were transferred to nitrocellulose membrane (PVDF) and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp). Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH)3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.
Nimesulide, a cyclooxygenase-2 preferential inhibitor, impairs renal function in the newborn rabbit.
Resumo:
Tocolysis with nonsteroidal anti-inflammatory drugs (NSAIDs) has been widely accepted for several years. Recently, the use of the cyclooxygenase-2 (COX2) preferential NSAID nimesulide has been proposed. However, data reporting neonatal acute renal failure or irreversible end-stage renal failure after maternal ingestion of nimesulide question the safety of this drug for the fetus and the neonate. Therefore, this study was designed to define the renal effects of nimesulide in newborn rabbits. Experiments were performed in 28 newborn rabbits. Renal function and hemodynamic parameters were measured using inulin and para-aminohippuric acid clearances as markers of GFR and renal blood flow, respectively. After a control period, nimesulide 2, 20, or 200 microg/kg was given as an i.v. bolus, followed by a 0.05, 0.5, or 5 microg.kg(-1).min(-1) infusion. Nimesulide administration induced a significant dose-dependent increase in renal vascular resistance (29, 37, and 92%, respectively), with a concomitant decrease in diuresis (-5, -23, and -44%), GFR (-12, -23, and -47%), and renal blood flow (-23, -23, and -48%). These results are in contrast with recent reports claiming that selective COX2 inhibition could be safer for the kidney than nonselective NSAIDs. These experiments confirm that prostaglandins, by maintaining renal vasodilation, play a key role in the delicate balance regulating neonatal GFR. We conclude that COX2-selective/preferential inhibitors thus should be prescribed with the same caution as nonselective NSAIDs during pregnancy and in the neonatal period.
Resumo:
Introduction Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease CYP2D6 activity in vitro. We investigated whether LKM-1 antibodies might reduce CYP2D6 activity also in vivo.Materials and Methods All patients with chronic hepatitis C and LKM-1 antibodies enrolled in the Swiss Hepatitis C Cohort Study (SCCS) were assessed: ten were eligible and fi tted to patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specifi c substrate using the dextromethorphan/dextrorphan (DEM/DOR) metabolic ratio to classify patients into four activity phenotypes (i.e. ultrarapid, extensive, intermediate and poor metabolizers). The concordance between phenotype based on DEM/DOR ratio and phenotype expected from genotype was examined in LKM-1 positive and negative patients. Groups were compared with respect to the DEM/DOR metabolic ratio.Results All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with CYP2D6 genotype in most LKM-negative patients, whereas only three (30%) LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was six-fold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, p = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies.Conclusion In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies in the setting of new protease inhibitor therapies
Resumo:
Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the D-retro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4), was unaffected. We then analyze the action of D-JNKI1 on four JNK targets containing a JNK-binding domain: MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells (MADD/DENN), MKK7, MKK4 and JNK-interacting protein-1 (IB1/JIP-1).
Resumo:
The c-Jun-N-terminal kinase (JNK) pathway has been shown to play an important role in excitotoxic neuronal death and several studies have demonstrated a neuroprotective effect of D-JNKi, a peptide inhibitor of JNK, in various models of cerebral ischemia. We have now investigated the effect of D-JNKi in a model of transient focal cerebral ischemia (90 min) induced by middle cerebral artery occlusion (MCAo) in adult male rats. D-JNKi (0.1 mg/kg), significantly decreased the volume of infarct, 3 days after cerebral ischemia. Sensorimotor and cognitive deficits were then evaluated over a period of 6 or 10 days after ischemia and infarct volumes were measured after behavioral testing. In behavioral studies, D-JNKi improved the general state of the animals as demonstrated by the attenuation of body weight loss and improvement in neurological score, as compared with animals receiving the vehicle. Moreover, D-JNKi decreased sensorimotor deficits in the adhesive removal test and improved cognitive function in the object recognition test. In contrast, D-JNKi did not significantly affect the infarct volume at day 6 and at day 10. This study shows that D-JNKi can improve functional recovery after transient focal cerebral ischemia in the rat and therefore supports the use of this molecule as a potential therapy for stroke.
Resumo:
In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.
Resumo:
BACKGROUND: The exact pathogenesis of the pediatric disorder periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome is unknown. OBJECTIVES: We hypothesized that PFAPA might be due to dysregulated monocyte IL-1β production linked to genetic variants in proinflammatory genes. METHODS: Fifteen patients with PFAPA syndrome were studied during and outside a febrile episode. Hematologic profile, inflammatory markers, and cytokine levels were measured in the blood. The capacity of LPS-stimulated PBMCs and monocytes to secrete IL-1β was assessed by using ELISA, and active IL-1β secretion was visualized by means of Western blotting. Real-time quantitative PCR was performed to assess cytokine gene expression. DNA was screened for variants of the MEFV, TNFRSF1A, MVK, and NLRP3 genes in a total of 57 patients with PFAPA syndrome. RESULTS: During a febrile attack, patients with PFAPA syndrome revealed significantly increased neutrophil counts, erythrocyte sedimentation rates, and C-reactive protein, serum amyloid A, myeloid-related protein 8/14, and S100A12 levels compared with those seen outside attacks. Stimulated PBMCs secreted significantly more IL-1β during an attack (during a febrile episode, 575 ± 88 pg/mL; outside a febrile episode, 235 ± 56 pg/mL; P < .001), and this was in the mature active p17 form. IL-1β secretion was inhibited by ZYVAD, a caspase inhibitor. Similar results were found for stimulated monocytes (during a febrile episode, 743 ± 183 pg/mL; outside a febrile episode, 227 ± 92 pg/mL; P < .05). Genotyping identified variants in 15 of 57 patients, with 12 NLRP3 variants, 1 TNFRSF1A variant, 4 MEFV variants, and 1 MVK variant. CONCLUSION: Our data strongly suggest that IL-1β monocyte production is dysregulated in patients with PFAPA syndrome. Approximately 20% of them were found to have NLRP3 variants, suggesting that inflammasome-related genes might be involved in this autoinflammatory syndrome.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
BACKGROUND: Early virological failure of antiretroviral therapy associated with the selection of drug-resistant human immunodeficiency virus type 1 in treatment-naive patients is very critical, because virological failure significantly increases the risk of subsequent failures. Therefore, we evaluated the possible role of minority quasispecies of drug-resistant human immunodeficiency virus type 1, which are undetectable at baseline by population sequencing, with regard to early virological failure. METHODS: We studied 4 patients who experienced early virological failure of a first-line regimen of lamivudine, tenofovir, and either efavirenz or nevirapine and 18 control patients undergoing similar treatment without virological failure. The key mutations K65R, K103N, Y181C, M184V, and M184I in the reverse transcriptase were quantified by allele-specific real-time polymerase chain reaction performed on plasma samples before and during early virological treatment failure. RESULTS: Before treatment, none of the viruses showed any evidence of drug resistance in the standard genotype analysis. Minority quasispecies with either the M184V mutation or the M184I mutation were detected in 3 of 18 control patients. In contrast, all 4 patients whose treatment was failing had harbored drug-resistant viruses at low frequencies before treatment, with a frequency range of 0.07%-2.0%. A range of 1-4 mutations was detected in viruses from each patient. Most of the minority quasispecies were rapidly selected and represented the major virus population within weeks after the patients started antiretroviral therapy. All 4 patients showed good adherence to treatment. Nonnucleoside reverse-transcriptase inhibitor plasma concentrations were in normal ranges for all 4 patients at 2 separate assessment times. CONCLUSIONS: Minority quasispecies of drug-resistant viruses, detected at baseline, can rapidly outgrow and become the major virus population and subsequently lead to early therapy failure in treatment-naive patients who receive antiretroviral therapy regimens with a low genetic resistance barrier.
Resumo:
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.