958 resultados para photorefractive and semiconductor materials
Resumo:
The optical and electronic properties of highly tetrahedral amorphous diamond-like carbon (amorphous diamond, a-D) films were investigated. The structure of the films grown on silicon and glass substrates, under similar deposition conditions using a compact filtered cathodic vacuum arc system, are compared using electron energy loss spectroscopy (EELS). Results from hydrogenation of the films are also reported. The hydrogenated films show two prominent IR absorption peaks centered at 2920 and 2840 cm-1, which are assigned to the stretch mode of the C-H bond in the sp3 configuration on the C-H3 and C-H sites respectively. The high loss EELS spectra show no reduction in the high sp3 content in the hydrogenated films. UV and visible transmission spectra of a-D thin films are also presented. The optical band gap of 2.0-2.2 eV for the a-D films is found to be consistent with the electronic bandgap. The relationship between the intrinsic compressive stress in the films and the refractive index is also presented. The space charge limited current flow is analyzed and coupled with the optical absorption data to give an estimate of 1018 cm-3 eV-1 for the valence band edge density of states.
Resumo:
We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Hydrogenated tetrahedral amorphous carbon (ta-C:H) is a form of diamond-like carbon with a high sp3 content (>60%), grown here using a plasma beam source. Information on the behaviour of hydrogen upon annealing is obtained from effusion measurements, which show that hydrogen does not effuse significantly at temperatures less than 500 °C in films grown using methane and 700 °C in films grown using acetylene. Raman measurements show no significant structural changes at temperatures up to 300 °C. At higher temperatures, corresponding to the onset of effusion, the Raman spectra show a clustering of the sp2 phase. The density of states of ta-C:H is directly measured using scanning tunnelling spectroscopy. The measured gradients of the conduction and valence band tails increase up to 300 °C, confirming the occurrence of band tail sharpening. Examination of the photoluminescence background in the Raman spectra shows an increase in photoluminescence intensity with decreasing defect density, providing evidence that paramagnetic defects are the dominant non-radiative recombination centres in ta-C:H.
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boronimplanted shallow pn-junctions in silicon technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports on recent experiments regarding shallow junction engineering in germanium, annealing of ITO layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). A more common feature evolving from our work was related to the modeling of wafer stress during millisecond thermal processing with flash lamps. Finally recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. © 2007 IEEE.
Resumo:
A process to fabricate solution-processable thin-film transistors (TFTs) with a one-step self-aligned definition of the dimensions in all functional layers is demonstrated. The TFT-channel, semiconductor materials, and effective gate dimention of different layers are determined by a one-step imprint process and the subsequent pattern transfer without the need for multiple patterning and mask alignment. The process is compatible with fabrication of large-scale circuits. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A new theoretical model that predicts the magnetostriction of multilayered composites has been developed. The model takes into account the shear stress between the composite layers and consequently predicts a non-uniform strain along their thickness. The model has been experimentally validated by producing composites formed from three materials with different magnetostrains and mechanical properties, and controlled layer thicknesses in the order of micrometers. Deformations of several ppm, up to 7.5% of the saturation magnetostrain were measured between the edge and the centre of such composites. © 2006 Elsevier B.V. All rights reserved.