967 resultados para photochemical reaction mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imines were synthesized from benzyl alcohol and amines by using catalysts of gold nanoparticles supported on ZrO2 (Au/ZrO2). The effects of reaction time, temperature, gold loadings and base were investigated. High yields were achieved under moderate conditions (60 °C) in the presence of KOCH3. For instance, the yield of N-benzylidenebenzylamine produced from benzyl alcohol and benzylamine on 3 wt% Au/ZrO2 is 87 %. The synthesis of imine involves two reaction steps: selective oxidation of benzyl alcohol to benzaldehyde and the coupling reaction of amines with benzaldehyde. In the first step, the base promotes the selective oxidation. The reactions of benzyl alcohol with three different amines, aniline, n-butylamine and benzylamine, were conducted to produce corresponding imines. The results show that the amine with stronger nucleophilicity has better ability to react with benzaldehyde in the second step, resulting in higher yield of the corresponding imine. We proposed a tentative mechanism for the synthesis process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydration of neutral and protonated glycerol was investigated using quantum mechanical calculations (CBS-QB3). Calculations on neutral glycerol show that there is a high barrier for simple 1,2-dehydration, E-a = 70.9 kcal mol(-1), which is lowered to 65.2 kcal mol(-1) for pericyclic 1,3-dehydration. In contrast, the barriers for dehydration of protonated glycerol are much lower. Dehydration mechanisms involving hydride transfer, pinacol rearrangement, or substitution reactions have barriers between 20 and 25 kcal mol(-1). Loss of water from glycerol via substitution results in either oxirane or oxetane intermediates, which can interconvert over a low barrier. Subsequent decomposition of these intermediates proceeds via either a second dehydration step or loss of formaldehyde. The computed mechanisms for decomposition of protonated glycerol are supported by the gas-phase fragmentation of protonated glycerol observed using a triple-quadrupole mass spectrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ortho, meta and para anions of methyl benzoate may be made in the source of a mass spectrometer by the S(N)2(Si) reactions between HO- and methyl (o-, m-, and p-trimethylsilyl)benzoate respectively. All three anions lose CO upon collisional activation to form the ortho anion of anisole in the ratio ortho>>meta > para. The rearrangement process is charge directed through the ortho anion. Theoretical calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that the conversion of the meta and para anions to the ortho anion prior to loss of CO involve 1,2-H transfer(s), rather than carbon scrambling of the methoxycarbonylphenyl anion. There are two mechanisms which can account for this rearrangement, viz. (A) cyclisation of the ortho anion centre to the carbonyl group of the ester to give a cyclic carbonyl system in which the incipient methoxide anion substitutes at one of the two equivalent ring carbons of the three membered ring to yield an intermediate which loses CO to give the ortho anion of anisole, and (B) an elimination reaction to give an intermediate benzyne-methoxycarbonyl anion complex in which the MeOCO- species acts as a MeO- donor, which then adds to benzyne to yield the ortho anion of anisole. Calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that (i) the barrier in the first step (the rate determining step) of process A is 87 kJ mol(-1) less than that for the synchronous benzyne process B, and (ii) there are more low frequency vibrations in the transition state for benzyne process B than for the corresponding transition state for process A. Stepwise process A has the lower barrier for the rate determining step, and the lower Arrhenius factor: we cannot differentiate between these two mechanisms on available evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylperoxyl radicals are intermediates in the oxidation Of hydrocarbons. The reactive nature of these intermediates, however, has made therin elusive to direct observation and isolation. We have employed ion trap mass spectrometry to synthesize and characterize 4-carboxylatocyclohexyl radical anions ((center dot)C(6)H(10)-CO(2)(-)) and observe their reactivity in the presence of dioxygen. The resulting reaction is facile (k = 1.8 x 10(-10) cm(3) molecule(-1) s(-1) or 30% of calculated collision rate) and results in (i) the addition Of O(2) to form stabilized 4-carboxylatocyclohexylperoxyl radical anions ((center dot)OO-C(6)H(10)-CO(2)(-)), providing the first direct observation of a cyclohexylperoxyl radical, and (ii) elimination of HO(2)(center dot) and HO(center dot) radicals consistent with recent laser-induced fluorescence studies of the reaction of neutral cyclohexyl radicals with O(2). Electronic structure calculations at the B3LYP/6-31+G(d) level of theory reveal viable pathways for the observed reactions showing that formation of the peroxyl radical is exothermic by 37 kcal mol(-1) with subsequent transition states its low as -6.6 kcal mol(-1) (formation of HO(2)(center dot)) and -9.1 kcal mol(-1) (formation of HO(center dot)) with respect to the entrance channel. The combined computational and experimental data Suggest that the structures of the reaction products correspond to cyclohexenes and epoxides from HO(2)(center dot) and HO(center dot) loss, respectively, while alternative pathways leading to cyclohexanone or ring-opened isomers ate not observed, Activation of the charged peroxyl radical (center dot)OO-C(6)H(10)-CO(2)(-) by collision induced disassociation also results in the loss Of HO(2)(center dot) and HO(center dot) radicals confirming that these products are directly connected to the peroxyl radical intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potenital pathways for the deactivation of hindered amine light stabilisers (HALS) have been investigated by observing reactions of model compounds-based on 4-substituted derivatives of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-with hydroxyl radicals. In these reactions, dilute aqueous suspensions of photocatalytic nanoparticulate titanium dioxide were irradiated with UV light in the presence of water-soluble TEMPO derivatives. Electron spin resonance (ESR) and electrospray ionisation mass-spectrometry (ESI-MS) data were acquired to provide complementary structural elucidation of the odd-and even-electron products of these reactions and both techniques show evidence for the formation of 4-oxo-TEMPO (TEMPONE). TEMPONE formation from the 4-substituted TEMPO compounds is proposed to be initiated by hydrogen abstraction at the 4-position by hydroxyl radical. High-level ab initio calculations reveal a thermodynamic preference for abstraction of this hydrogen but computed activation barriers indicate that, although viable, it is less favoured than hydrogen abstraction from elsewhere on the TEMPO scaffold. If a radical is formed at the 4-position however, calculations elucidate two reaction pathways leading to TEMPONE following combination with either a second hydroxyl radical or dioxygen. An alternate mechanism for conversion of TEMPOL to TEMPONE via an alkoxyl radical intermediate is also considered and found to be competitive with the other pathways. ESI-MS analysis also shows an increased abundance of analogous 4-substituted piperidines during the course of irradiation, suggesting competitive modification at the 1-position to produce a secondary amine. This modification is confirmed by characteristic fragmentation patterns of the ionised piperidines obtained by tandem mass spectrometry. The conclusions describe how reaction at the 4-position could be responsible for the gradual depletion of HALS in pigmented surface coatings and secondly, that modification at nitrogen to form the corresponding secondary amine species may play a greater role in the stabilisation mechanisms of HALS than previously considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to develop a comprehensive approach to innovate urban policymaking and planning to successfully deliver the knowledge-based agenda. The paper, first, examines the concept of knowledge-based urban development, which has become a popular urban development policy and strategy in recent years, through a comprehensive review of the literature. It, then, introduces and discusses a novel methodological approach for effective policymaking and planning mechanism to deliver the knowledge-based agenda of cities. The paper, with the proposed methodology, brings together urban policymaking and planning approaches, and introduces a novel way to assess knowledge-based urban development achievements and potentials of emerging and prosperous knowledge cities. The paper, thus, provides an invaluable instrument to inform local and regional decision and plan making mechanisms to deliver their knowledge-based agendas and help them in moving towards building their sustainable knowledge cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is a common metastatic site in human breast cancer (HBC). Since bone metastasis occurs very rarely from current spontaneous or experimental metastasis models of HBC cells in nude mice, an arterial seeding model involving the direct injection of the cells into the left ventricle has been developed to better understand the mechanisms involved in this process. We present here a sensitive polymerase chain reaction (PCR) method to detect and quantitate bone and soft organ metastasis in nude mice which have been intracardially inoculated with Lac Z transduced HBC cells. Amplification of genomically incorporated Lac Z sequences in MDA-MB-231-BAG HBC cells enables us to specifically detect these cells in mouse organs and bones. We have also created a competitive template to use as an internal standard in the PCR reactions, allowing us to better quantitate levels of HBC metastasis. The results of this PCR detection method correlate well with cell culture detection from alternate long bones from the same mice, and are more sensitive than gross Lac Z staining with X-gal or routine histology. Comparable qualitative results were obtained with PCR and culture in a titration experiment in which mice were inoculated with increasing numbers of cells, but PCR is more quantifiable, less time consuming, and less expensive. This assay can be employed to study the molecular and cellular aspects of bone metastasis, and could easily be used in conjunction with RT-PCR-based analyses of gene products which may be involved with HBC metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two unique test systems were designed and built to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol–gels to be studied. A centrifuge capable of providing high gravity environments of up to 70 g for extended periods while applying a 100 mbar vacuum and a temperature of 40–50 °C to the reaction chambers was developed. The second system was used in the QUT Microgravity Drop Tower Facility also provided the same thermal and vacuum conditions used in the centrifuge, but was required to operate autonomously during free fall. Through the use of post synthesis instrumental characterization, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesized above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward toward this excess of water, which favors the condensation reaction of remaining sol–gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favored instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40–50 °C instead of the conventional method of calcination above 450 °C solely through sol–gel synthesis at higher gravity levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progression of a tumour from one of benign and delimited growth to one that is invasive and metastatic is the major cause of poor clinical outcome in cancer patients. The invasion and metastasis of tumours is a highly complex and multistep process that requires a tumour cell to modulate its ability to adhere, degrade the surrounding extracellular matrix, migrate, proliferate at a secondary site and stimulate angiogenesis. Knowledge of the process has greatly increased and this has resulted in the identification of a number of molecules that are fundamental to the process. The involvement of these molecules has been shown to relate not only to the survival and proliferation of the tumour cell but, also to the processes of tumour cell adhesion, migration, and the tumour cells ability to degrade and escape the primary site as well as play a role in angiogenesis. These molecules may provide important therapeutic targets that represent the ability to target specific steps in the process of invasion and metastasis and provide additional therapies. The review focuses on representative key targets in each of these processes and summarises the state of play in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent meta-analysis provides evidence supporting the universal application of school-based prevention programs for adolescent depression. The mechanisms underlying such successful interventions, however, are largely unknown. We report on a qualitative analysis of 109 Grade 9 students’ beliefs about what they gained from an evidence-based depression prevention intervention, the Resourceful Adolescent Program (RAP-A). Fifty-four percent of interviewees articulated at least one specific example of program benefit. A thematic analysis of responses revealed two major themes, improved interpersonal relationships and improved self-regulation, both stronger than originally assumed. A more minor theme also emerged—more helpful cognitions. It is postulated that both improved interpersonal relationships and improved self-regulation are likely to enhance one another, and more helpful cognitions may express its contribution through enhanced self-regulation. These findings broaden our understanding of the impact of depression prevention programs, beginning to illuminate how such programs benefit participants.