935 resultados para phosphodiesterase inhibitors
Resumo:
MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.
Resumo:
INTRODUCTION There is little data on stopping cholinesterase inhibitors in Dementia with Lewy bodies (DLB). Equally, it is not known if increasing the dose of cholinesterase inhibitors may help neuropsychiatric symptoms in advanced DLB. METHOD We conducted an open label trial with donepezil involving 16 patients with LBD when the dose was reduced and treatment stopped over 4 weeks. Another 7 patients were given a trial of an increased dose of donepezil (15 mg) to resolve rehyphen;emergent neuropsychiatric symptoms. RESULTS The slow discontinuation protocol was well tolerated in advanced DLB. Five of the seven patients given a trial of a higher dose of donepezil were rated as clinically improved after 12 weeks treatment. CONCLUSION Cholinesterase inhibitors can be discontinued slowly in advanced DLB. Increasing the dose of donepezil may be of benefit to some patients with DLB who experience a recurrence in their neuropsychiatric symptoms.
Resumo:
This article reviews the cholinergic changes in Parkinson's disease and dementia (PDD) and dementia with Lewy bodies (DLB), their potential clinical implications, and the available evidence for cholinesterase inhibitors in the treatment of PDD and DLB. Marked neuronal loss of cholinergic nuclei, reduced cholinergic markers in the neocortex, hippocampus, and selected thalamic nuclei, and receptor changes have been reported. One large and 2 small placebo-controlled trials and nearly 20 open-label studies suggest that cholinesterase inhibitors have a positive effect on cognition, psychiatric symptoms, and global function in patients with DLB and PDD. The treatment is well tolerated in most patients without any apparent worsening of extrapyramidal motor features. Given the high risk of severe sensitivity reactions and increased risk of cerebrovascular incidents during treatment with neuroleptics, more clinical trials of cholinesterase inhibitors are encouraged to establish their precise role in DLB and PDD.
Resumo:
Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.
Resumo:
The β2 adrenergic receptor (β2AR) regulates smooth muscle relaxation in the vasculature and airways. Long- and Short-acting β-agonists (LABAs/SABAs) are widely used in treatment of chronic obstructive pulmonary disorder (COPD) and asthma. Despite their widespread clinical use we do not understand well the dominant β2AR regulatory pathways that are stimulated during therapy and bring about tachyphylaxis, which is the loss of drug effects. Thus, an understanding of how the β2AR responds to various β-agonists is crucial to their rational use. Towards that end we have developed deterministic models that explore the mechanism of drug- induced β2AR regulation. These mathematical models can be classified into three classes; (i) Six quantitative models of SABA-induced G protein coupled receptor kinase (GRK)-mediated β2AR regulation; (ii) Three phenomenological models of salmeterol (a LABA)-induced GRK-mediated β2AR regulation; and (iii) One semi-quantitative, unified model of SABA-induced GRK-, protein kinase A (PKA)-, and phosphodiesterase (PDE)-mediated regulation of β2AR signalling. The various models were constrained with all or some of the following experimental data; (i) GRK-mediated β2AR phosphorylation in response to various LABAs/SABAs; (ii) dephosphorylation of the GRK site on the β2AR; (iii) β2AR internalisation; (iv) β2AR recycling; (v) β2AR desensitisation; (vi) β2AR resensitisation; (vii) PKA-mediated β2AR phosphorylation in response to a SABA; and (viii) LABA/SABA induced cAMP profile ± PDE inhibitors. The models of GRK-mediated β2AR regulation show that plasma membrane dephosphorylation and recycling of the phosphorylated β2AR are required to reconcile with the measured dephosphorylation kinetics. We further used a consensus model to predict the consequences of rapid pulsatile agonist stimulation and found that although resensitisation was rapid, the β2AR system retained the memory of prior stimuli and desensitised much more rapidly and strongly in response to subsequent stimuli. This could explain tachyphylaxis of SABAs over repeated use in rescue therapy of asthma patients. The LABA models show that the long action of salmeterol can be explained due to decreased stability of the arrestin/β2AR/salmeterol complex. This could explain long action of β-agonists used in maintenance therapy of asthma patients. Our consensus model of PKA/PDE/GRK-mediated β2AR regulation is being used to identify the dominant β2AR desensitisation pathways under different therapeutic regimens in human airway cells. In summary our models represent a significant advance towards understanding agonist-specific β2AR regulation that will aid in a more rational use of the β2AR agonists in the treatment of asthma.
Resumo:
The neutral bis ((pivaloyloxy)methyl) (PIV$\sb2\rbrack$ derivatives of FdUMP, ddUMP, and AZTMP were synthesized as potential membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. These compounds were designed to enter cells by passive diffusion and revert to the parent nucleotides after removal of the PIV groups by hydrolytic enzymes. These prodrugs were prepared by condensation of FUdR, ddU, and AZT with PIV$\sb2$ phosphate in the presence of triphenylphosphine and diethyl azodicarboxylate (the Mitsunobo reagent). PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP were stable in the pH range 1.0-4.0 (t$\sb{1/2} = {>}$100 h). They were also fairly stable at pH 7.4 (t$\sb{1/2} = {>}$40 h). In 0.05 M NaOH solution, however, they were rapidly degraded (t$\sb{1/2} < 2$ min). In the presence hog liver carboxylate esterase, they were converted quantitatively to the corresponding phosphodiesters, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP; after 24 h incubation, only trace amounts of FdUMP, ddUMP, and AZTMP (1-5%) were observed indicating that the PIV$\sb1$ compounds were poor substrates for the enzyme. In human plasma, the PIV$\sb2$ compounds were rapidly degraded with half-lives of less than 5 min. The rate of degradation of the PIV$\sb2$ compounds in the presence of phosphodiesterase I was the same as that in buffer controls, indicating that they were not substrates for this enzyme. In the presence of phosphodiesterase I, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP were converted quantitatively to FdUMP, ddUMP, and AZTMP.^ PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were effective at controlling HIV type 1 infection in MT-4 and CEM tk$\sp-$ cells in culture. Mechanistic studies demonstrated that PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were taken up by the cells and converted to ddUTP and AZTTP, both potent inhibitors of HIV reverse transcriptase. However, a potential shortcoming of PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP as clinical therapeutic agents is that they are rapidly degraded (t$\sb{1/2}$ = approx. 4 minutes) in human plasma by carboxylate esterases. To circumvent this limitation, chemically-labile nucleotide prodrugs and liposome-encapsulated nucleotide prodrugs were investigated. In the former approach, the protective groups bis(N, N-(dimethyl)carbamoyloxymethyl) (DM$\sb2$) and bis (N-(piperidino)carbamoyloxymethyl) (DP$\sb2$) were used to synthesize DM$\sb2$-ddUMP and DP$\sb2$-ddUMP, respectively. In aqueous buffers (pH range 1.0-9.0) these compounds were degraded with half-lives of 3 to 4 h. They had similar half-lives in human plasma demonstrating that they were resistant to esterase-mediated cleavage. However, neither compound gave rise to significant concentrations of ddUMP in CEM or CEM tk$\sp-$ cells. In the liposome-encapsulated nucleotide prodrug approach, three different liposomal formulations of PIV$\sb2$-ddUMP (L-PIV$\sb2$-ddUMP) were investigated. The half-lifes of these L-PIV$\sb2$-ddUMP preparations in human plasma were 2 h compared with 4 min for the free drug. The preparations were more effective at controlling HIV-1 infection than free PIV$\sb2$-ddUMP in human T cells in culture. Collectively, these data indicate that PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP are effective membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. ^
Resumo:
It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.
Resumo:
Progressive interstitial fibrosis and tubular atrophy (IF/TA) is a leading cause of chronic allograft dysfunction. Increased extracellular matrix remodeling regulated by matrix metalloproteases (MMPs) and their inhibitors (TIMPs) has been implicated in the development of IF/TA. The aim of this study was to investigate whether urinary/serum MMPs/TIMPs correlate with subclinical IF/TA detected in surveillance biopsies within the first 6months post-transplant. We measured eight different MMPs/TIMPs simultaneously in urine and serum samples from patients classified as normal histology (n=15), IF/TA 1 (n=15) and IF/TA 2-3 (n=10). There was no difference in urinary MMPs/TIMPs among the three groups, and only 1/8 serum MMPs/TIMPs (i.e. MMP-1) was significantly elevated in biopsies with IF/TA 2-3 (p=0.01). In addition, urinary/serum MMPs/TIMPs were not different between surveillance biopsies demonstrating an early development of IF/TA (i.e. delta IF/TA≥1 compared to a previous biopsy obtained three months before; n=11) and stable grade of IF/TA (i.e. delta IF/TA=0; n=20). Next, we investigated whether urinary/serum MMP/TIMP levels are elevated during acute subclinical tubulitis in surveillance biopsies obtained within the first 6months post-transplant (n=25). Compared to biopsies with normal histology, serum MMPs/TIMPs were not different; however, all urinary MMP/TIMP levels were numerically higher during subclinical tubulitis (MMP-1, MMP-7, TIMP-1 with p≤0.04). We conclude that urinary/serum MMPs/TIMPs do hardly correlate with existing or early developing IF/TA in surveillance biopsies obtained within the first 6months post-transplant. This could be explained by the dynamic process of extracellular matrix remodeling, which seems to be active during acute tubulo-interstitial injury/inflammation, but not in quiescent IF/TA.