976 resultados para pesticides contamination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigating preferential flow, including macropore flow, is crucial to predicting and preventing point sources of contamination in soil, for example in the vicinity of pumping wells. With a view to advancing groundwater protection, this study aimed (i) to quantify the strength of macropore flow in four representative natural grassland soils on the Swiss plateau, and (ii) to define the parameters that significantly control macropore flow in grassland soil. For each soil type we selected three measurement points on which three successive irrigation experiments were carried out, resulting in a total of 36 irrigations. The strength of macropore flow, parameterized as the cumulated water volume flowing from macropores at a depth of 1 m in response to an irrigation of 60 mm h−1 intensity and 1 h duration, was simulated using the dual-permeability MACRO model. The model calibration was based on the key soil parameters and fine measurements of water content at different depths. Modelling results indicate high performance of macropore flow in all investigated soil types except in gleysols. The volume of water that flowed from macropores and was hence expected to reach groundwater varied between 81% and 94% in brown soils, 59% and 67% in para-brown soils, 43% and 56% in acid brown soils, and 22% and 35% in gleysols. These results show that spreading pesticides and herbicides in pumping well protection zones poses a high risk of contamination and must be strictly prohibited. We also found that organic carbon content was not correlated with the strength of macropore flow, probably due to its very weak variation in our study, while saturated water content showed a negative correlation with macropore flow. The correlation between saturated hydraulic conductivity (Ks) and macropore flow was negative as well, but weak. Macropore flow appears to be controlled by the interaction between the bulk density of the uppermost topsoil layer (0–0.10 m) and the macroporosity of the soil below. This interaction also affects the variations in Ks and saturated water content. Further investigations are needed to better understand the combined effect of all these processes including the exchange between micropore and macropore domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pesticides are used to protect plants all over the world. Their increasing specificity has been due to utilization of differences in biochemical processes, and has been accompanied by lower human toxicity. Nevertheless cases of poisoning are still observed. While certain toxic substances are provided with characteristic dyes or pigments to facilitate easy identification, no overview of pesticide colors exists. The lack of available product information prompted us to explore the colors and dyes of pesticides registered in Germany, most of which are commercially available worldwide. A compilation of the colors and odors of 207 pesticide products is presented. While some of the substances can be identified by their physical characteristics, in other cases, the range of possibilities can be narrowed by their nature and color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylphenols are pollutants that are present in marine sediments and fishes. In earlier work it has been discovered that alkylphenols are present in the Homarus americanus, or the American lobster. Research suggests that alkylphenols could behave as endocrine disruptors as they have been found to affect juvenile hormone activity. It has been hypothesized that lobsters may be able to rid themselves of alkylphenol contamination through secreting these compounds into the environment or sequestering them in their tissues. In this study, I address the question of how lobsters may rid themselves of alkylphenols by analyzing hemolymph, muscle, gill, and shell samples and by looking for the presence of alkylphenols in natural and artificially injected lobsters. A total of thirty lobsters were analyzed. In my first study I found alkylphenols only in the gill tissue samples of natural lobsters after alkylphenols were initially found in the hemolymph, and found none in the muscle and shell samples. The types of alkylphenols found in the gills were often different than the alkylphenols found in the hemolymph. The gills are known as a site for exchange for the lobster. The lobster may not only be excreting alkylphenols from its gill surfaces but these findings suggest that the lobster may also be acquiring alkylphenols in the environment from these surfaces. It is possible that the lobsters may have ingested additional contaminants after the hemolymph samples were taken and before the gill samples were taken. As for the shell and muscle samples, it is possible that by our method the levels were too low to detect since we have a threshold of detection of 1ng/mL. It is also a conclusion that alkylphenols were not sequestered in these tissues. In the second study, an expanded set of muscles samples from natural lobsters were tested as well as additional lobsters that were artificially injected with one of our alkylphenol compounds of interest, compound three. We found that lobsters injected with peak three showed significantly higher alkylphenol concentrations in all tissues, most notably the gill samples. The non-injected lobsters that died shortly after being in the laboratory, showed mostly peak three but their overall values were much less than those of the injected lobsters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this research were (1) to study the effect of contact pressure, compression time, and liquid (moisture content of the fabric) on the transfer by sliding contact of non-fixed surface contamination to protective clothing constructed from uncoated, woven fabrics, (2) to study the effect of contact pressure, compression time, and liquid content on the subsequent penetration through the fabric, and (3) to determine if varying the type of contaminant changes the effect of contact pressure, compression time, and liquid content on the transfer by sliding contact and penetration of non-fixed surface contamination. ^ It was found that the combined influence of the liquid (moisture content of the fabric), load (contact pressure), compression time, and their interactions significantly influenced the penetration of all three test agents, sucrose- 14C, triolein-3H, and starch-14C through 100% cotton fabric. The combined influence of the statistically significant main effects and their interactions increased the penetration of triolein- 3H by 32,548%, sucrose-14C by 7,006%, and starch- 14C by 1,900%. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was carried out at St. Luke's Episcopal Hospital to evaluate environmental contamination of Clostridium difficile in the infected patient rooms. Samples were collected from the high risk areas and were immediately cultured for the presence of Clostridium difficile . Lack of microbial typing prevented the study of molecular characterization of the Clostridium difficile isolates obtained led to a change in the study hypothesis. The study found a positivity of 10% among 50 Hospital rooms sampled for the presence of Clostridium difficile. The study provided data that led to recommendations that routine environmental sampling be carried in the hospital rooms in which patients with CDAD are housed and that effective environmental disinfection methods are used. The study also recommended molecular typing methods to allow characterization of the CD strains isolated from patients and environmental sampling to determine their type, similarity and origin.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outbreaks of diarrhea are common among children in day care centers (DCC). Enteropathogens associated with these outbreaks are spread by the fecal-oral route through contaminated hands or environmental objects. This prospective study was undertaken to determine the prevalence of fecal coliform (FC) contamination in the DCC environment. Ten rooms in 6 DCC housing 121 children $<$2 years of age were studied for 13 weeks. Inanimate objects (1275), toy balls (724), and hands (954) were cultured 1-3 times per week. FC contamination was common during each week of study and was significantly (p $<$ 0.05) greater for objects, toy balls, and hands of children in toddler compared to infant rooms. In 5 rooms in which clothes were worn over diapers, there was a significantly lower prevalence of FC of toy balls (p $<$ 0.005), inanimate objects (p $<$ 0.05), and hands of children (p $<$ 0.001) and caregivers (p $<$ 0.05) when compared to rooms in which overclothes were not worn. Occurrence of diarrhea was significantly associated with increased contamination of caregivers' and children's hands. Using plasmid analysis of trimethoprim (TMP)-resistant Escherichia coli, stool and environmental isolates from individual DCC rooms had the same plasmid patterns, which were unique to each center. In summary, FC of environmental isolates and hands of children and caregivers in DCC is common; toy balls can serve as sentinels of contamination; FC can be significantly decreased by use of clothes worn over diapers; and plasmid analysis of E. coli strains showed the same patterns from stool and environmental isolates. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^