567 resultados para patella groove


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS) are thiamine diphosphate (ThDP)-dependent enzymes that catalyze the decarboxylation of pyruvate to give a cofactor-bound hydroxyethyl group, which is transferred to a second molecule of pyruvate to give 2-acetolactate. AHAS is found in plants, fungi, and bacteria, is involved in the biosynthesis of the branched-chain amino acids, and contains non-catalytic FAD. ALS is found only in some bacteria, is a catabolic enzyme required for the butanediol fermentation, and does not contain FAD. Here we report the 2.3-Angstrom crystal structure of Klebsiella pneumoniae ALS. The overall structure is similar to AHAS except for a groove that accommodates FAD in AHAS, which is filled with amino acid side chains in ALS. The ThDP cofactor has an unusual conformation that is unprecedented among the 26 known three-dimensional structures of nine ThDP-dependent enzymes, including AHAS. This conformation suggests a novel mechanism for ALS. A second structure, at 2.0 Angstrom, is described in which the enzyme is trapped halfway through the catalytic cycle so that it contains the hydroxyethyl intermediate bound to ThDP. The cofactor has a tricyclic structure that has not been observed previously in any ThDP-dependent enzyme, although similar structures are well known for free thiamine. This structure is consistent with our proposed mechanism and probably results from an intramolecular proton transfer within a tricyclic carbanion that is the true reaction intermediate. Modeling of the second molecule of pyruvate into the active site of the enzyme with the bound intermediate is consistent with the stereochemistry and specificity of ALS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patellamide D (patH(4)) is a cyclic octapeptide isolated from the ascidian Lissoclinum patella. The peptide possesses a 24-azacrown-8 macrocyclic structure containing two oxazoline and two thiazole rings, each separated by an amino acid. The present spectrophotometric, electron paramagnetic resonance (EPR) and mass spectral studies show that patellamide D reacts with CuCl, and triethylamine in acetonitrile to form mononuclear and binuclear copper(II) complexes containing chloride. Molecular modelling and EPR studies suggest that the chloride anion bridges the copper(II) ions in the binuclear complex [Cu-2(patH(2))(mu-Cl)](+). These results contrast with a previous study employing both base and methanol, the latter substituting for chloride in the copper(II) complexes en route to the stable mu-carbonato binuclear copper(II) complex [Cu-2 (patH(2))(mu-CO3)]. Solvent clearly plays an important role in both stabilising these metal ion complexes and influencing their chemical reactivities. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infrapatellar fat pad has been implicated as a possible source of anterior knee pain. This study examined the nature, distribution and time-course of experimentally induced pain in the infrapatellar fat pad. Hypertonic saline (5%) was injected into the medial fat pad of 11 healthy individuals with no history of knee pain. Severity of pain was assessed at rest and during activity using an 11 point numerical rating scale (NRS) at regular intervals over 15-30 min following injection. Participants described the size of the pain region from a series of different sized circles while the area and type of pain was established from a body chart and the McGill pain questionnaire. The effect of pain on temperature-pain threshold and sensory thresholds of the anterior knee was assessed. Participants generally reported a deep aching pain that peaked in severity around 3 min and gradually declined over 15 min. Pain levels were not altered by clinical manoeuvres designed to impinge the fat pad. The size of the pain region was related to pain intensity. Pain was most commonly felt in the region of the fat pad medial to the patella, although some individuals reported proximal referred pain as far as the groin region. Thermal and sensory thresholds were not altered at a region close to the injection site during the experimental pain. These results suggest that nociceptive stimulation of the infrapatellar fat pad may cause anterior knee pain that is not necessarily confined locally particularly if pain is severe. This has implications for the investigation of pathological structures in patients presenting clinically with anterior knee pain and provides an experimental model of anterior knee pain. (C) 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electropalatography (EPG) was used as a biofeedback tool in a case study of a 30-year-old male with disordered articulation following traumatic brain injury (TBI). Based on qualitative measures of the participant's intelligibility, improved articulation of the fricatives /s/ and /integral/ were selected as treatment targets. Therapy was administered three times a week for 5 weeks. Results showed that word and sentence intelligibility increased approximately 10%, and error patterns for lingual articulation indicated that fricative -> stop and other fricative errors decreased considerably. EPG measures for /s/ exhibited a significantly more anterior main focus of articulatory contact post therapy. Consonant durations were significantly longer during weeks 3 and 4, and this finding was associated with the emergence of an articulatory contact pattern with a groove rather than complete closure. This articulatory pattern appeared inconsistently and was found to vary across articulations of /s/ but also within a single consonant production. For /integral/, the amount of contact was significantly reduced post therapy and an increase in duration was noted during week 4, similar to that occurring in the production of /s/. Spatial and timing measures were more variable than in normal speakers of English and indicated a general increase in variability across weeks for both /s/ and /integral/. It was concluded that, although the correct fricative patterns appeared only intermittently during production of the consonants, there seemed to be sufficient information for the listener to be able to classify the sound as a fricative. As a part of an intervention program, visual EPG biofeedback therapy would appear to have a definite role in assisting dysarthric speakers exhibiting difficulties with lingual articulation in understanding their errors, learning how to exploit kinesthetic, and acoustic sources of feedback, and how to make appropriate adjustments in tongue articulation to increase the level of speech intelligibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycophenolic acid (MPA) is a drug that has found widespread use as an immunosuppressive agent which limits rejection of transplanted organs. Optimal use of this drug is hampered by gastrointestinal side effects which can range in severity. One mechanism by which MPA causes gastropathy may involve a direct interaction between the drug and gastric phospholipids. To combat this interaction we have investigated the potential of MPA to coordinate Cu(II), a metal which has been used to inhibit gastropathy associated with use of the NSAID indomethacin. Using a range of spectroscopic techniques we show that Cu(II) is coordinated to two MPA molecules via carboxylates and, at low pH, water ligands. The copper complex formed is stable in solution as assessed by mass spectrometry and H-1 NMR diffusion experiments. Competition studies with glycine and albumin indicate that the copper-MPA complex will release Cu(II) to amino acids and proteins thereby allowing free MPA to be transported to its site of action. Transfer to serum albumin proceeds via a Cu(MPA)(albumin) ternary complex. These results raise the possibility that copper complexes of MPA may be useful in a therapeutic situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pneumonia caused by Pneumocystis carinii is ultimately responsible for the death of many acquired immunodeficiency syndrome (AIDS) patients. Large doses of trimethoprim and pyrimethamine in combination with a sulphonamide and/or pentamidine suppress the infection but produce serious side-effects and seldom prevent recurrence after treatment withdrawal. However, the partial success of the aforementioned antifolates, and also trimetrexate used alone, does suggest dihydrofolate reductase (DHFR) as a target for the development of antipneumocystis agents. From the DHFR inhibitory activities of 3'-substituted pyrimethamine analogues it was suggested that the 3'-(3'',3''-dimethyltriazen-1''-yl) substituent may be responsible for the greater activity for the P.carinii over the mammalian enzyme. Crystallographic and molecular modeling studies revealed considerable geometrical and electronic differences between the triazene and the chemically related formamidine functions that may account for the differences in DHFR inhibitory profiles. Structural and electronic parameters calculated for a series of 3'-(3'',3''-disubstitutedtriazen-1''-yl) pyrimethamine analogues did not correlate with the DHFR inhibitory activities. However, the in vitro screening against P.carinii DHFR revealed that the 3''-hydroxyethyl-3''-benzyl analogue was the most active and selective. Models of the active sites of human and P.carinii DHFRs were constructed using DHFR sequence and structural homology data which had identified key residues involved in substrate and cofactor binding. Low energy conformations of the 3'',3''-dimethyl and 3''-hydroxyethyl-3''-benzyle analogues, determined from nuclear magnetic resonance studies and theoretical calculations, were docked by superimposing the diaminopyrimidine fragment onto a previously docked pyrimethamine analogue. Enzyme kinetic data supported the 3''-hydroxyethyl-3''-benzyl moiety being located in the NADPH binding groove. The 3''-benzyl substituent was able to locate to within 3 AA of a valine residue in the active site of P.carinii DHFR thereby producing a hydrophobic contact. The equivalent residue in human DHFR is threonine, more hydrophilic and less likely to be involved in such a contact. This difference may account for the greater inhibitory activity this analogue has for P.carinii DHFR and provide a basis for future drug design. From an in vivo model of PCP in immunosuppressed rats it was established that the 3"-hydroxyethyl-3"-benzyl analogue was able to reduce the.P.carinii burden more effectively with increasing doses, without causmg any visible signs of toxicity. However, equivalent doses were not as effective as pentamidine, a current treatment of choice for Pneumocystis carinii pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules.