937 resultados para paraventricular nucleus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3 degrees-54 degrees). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F. radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 ran, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 +/- 0.01 in the HG system formalism and an absolute magnitude H-v(1, 1, 0) = 15.74 +/- 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at similar to 290 rim that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/( 100 nm) to 16%/(100 nm) in the 1.3 degrees-54 degrees phase angle range. The geometric albedo of the comet is 6.5 +/- 0.2% at 649 nm, with local variations of up to similar to 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary(1,2) and primordial processes(3,4). The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes(5). Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrastructural study of the hypoglossal nucleus (XII) in the rat has revealed two distinct neuronal populations. Hypoglossal motoneurons comprised the largest population of neurons in XII and were identified following injection of horseradish peroxidase (HRP) into the tongue. Motoneurons were large (25-50(mu)m), multipolar in shape and distributed throughout XII. The nucleus was large, round and centrally located, and the cytoplasm was characterized by dense lamellar arrays of rough endoplasmic reticulum. In contrast, a second population of small (10-18(mu)m), round to oval shaped neurons was found restricted to the ventral and dorsolateral regions of XII. The nucleus was markedly invaginated and eccentric, the cytoplasm scant and filled with free ribosomes, and the absence of lamellar arrays of rough endoplasmic reticulum was conspicuous. Neurons of this type were never found to contain HRP reaction product. These results demonstrate that the hypoglossal nucleus does not consist solely of motoneurons, but includes a distinctly separate, presumably non-motoneuronal pool. Arguments are presented in favor of this second neuron population being interneurons. The functional significance of these findings in relation to tongue control is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cumulative work presented here supports the hypothesis that plasticity in the cerebellar cortex and cerebellar nuclei mediates a simple associative form of motor teaming-Pavlovian eyelid conditioning. It was previously demonstrated that focal ablative lesions of cerebellar anterior lobe or pharmacological block of the cerebellar cortex output disrupted the timing of the conditioned eyeblink response, unmasking a response with a relatively fixed and very short latency to onset. The results of this thesis demonstrate that the short-latency responses are due to associative learning. Unpaired training does not support the acquisition of short-latency responses while the rate of acquisition of short-latency responses during paired training is approximately the same as that of timed conditioned responses. The acquisition of short-latency responses is dependent on an intact cerebellar cortex. Both ablative lesions of the cerebellar cortex and inactivation of cerebellar cortex output with picrotoxin block the acquisition of short-latency responses. However, once the short-latency responses are acquired neither disconnection of cerebellar cortex nor inactivation of the cerebellar nucleus block reacquisition. The results are consistent with the proposal that plasticity in the cerebellar cortex is necessary for learning the timing of conditioned responses, plasticity in the interpositus nucleus mediates the short latency responses, and cerebellar cortical output and mossy fiber input are necessary for the acquisition of short latency responses. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in carbon dioxide (CO2) and protons (H+) are the primary signals for breathing. Cells that sense changes in CO2/H+ levels and increase breathing accordingly are located in a region of the caudal medulla oblongata called the retrotrapezoid nucleus (RTN). Specifically, select RTN neurons are intrinsically pH sensitive and send excitatory projections to the respiratory rhythm generator to drive breathing. Glial cells in the RTN are thought to contribute to this respiratory drive, possibly by releasing ATP in response to increases in CO2/H+ levels. However, pH sensitivity of RTN glial cells has yet to be determined. Therefore, the goal of my thesis is to determine if acutely dissociated RTN cells can respond to changes in pH in isolation. To make this determination I used ratiometric fluorescent microscopy to measure intracellular calcium in dissociated RTN cells during changes in bath pH. I found that a small percentage of RTN cells (16%) respond to bath acidification from pH 7.3 to pH 6.9 with an increase in fluorescence indicating an increase in intracellular calcium. Preliminary electrophysiological findings suggest that responsive cells are unable to make action potentials, thus suggesting their identity to be glia. These results indicate that a subset of pH sensitive cells in the RTN are intrinsically pH sensitive and that glia cells may possibly play a role in central chemoreception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylphenidate is currently a drug of abuse and readily prescribed to both adolescents and adults. Chronic methylphenidate (MPH) exposure results in an increase in DA in the motive circuit, including the caudate nucleus (CN), similar to other drugs of abuse. This study focuses on research aimed to elucidate if there are intrinsic underlying differences in the CN electrophysiological activity of animals exhibiting different chronic responses to the same dose of MPH. Behavioral and caudate nucleus (CN) neuronal activity following acute and chronic doses of MPH was assessed by simultaneously recording the behavioral and neuronal activity. The experimental protocol lasted for 10 days using four groups; saline, 0.6, 2.5 and 10.0mg/kg MPH. Initially, the study determined that animals exposed to the same dose of MPH exhibited either behavioral sensitization or behavioral tolerance. Therefore animals were classified into two groups (behaviorally sensitized/tolerant) and their neuronal activity was evaluated. Four hundred and fifty one units were evaluated. Overall, a mixture of increases and decreases in CN neuronal populations was observed at initial MPH exposure, and at ED10 baseline and ED10 rechallenge. When separated based on their behavioral response (sensitized/tolerant), significant differences in neuronal response patterns was revealed. Animals exhibiting sensitization were more likely to increase their neuronal activity at ED1 and ED10 baseline, expressing the opposite response at ED10 rechallenge. Furthermore, when neuronal populations recorded from those animals exhibiting behavioral sensitization were statistically compared to those from animals exhibiting behavioral tolerance significant differences were observed. Collectively, these findings tell us that animals exposed to the same dose of MPH can respond oppositely and moreover that there is in fact some intrinsic difference in the two population’s neuronal activity. This study offers new insight into the electrophysiological differences between sensitized and tolerant animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae contains three proteins (Kap104p, Pse1p, and Kap123p) that share similarity to the 95-kDa β subunit of the nuclear transport factor importin (also termed karyopherin and encoded by KAP95/RSL1 in yeast). Proteins that contain nuclear localization sequences are recognized in the cytoplasm and delivered to the nucleus by the heterodimeric importin complex. A second importin-related protein, transportin, delivers a subset of heterogeneous nuclear ribonucleoproteins (hnRNPs) to the nucleoplasm. We now show that in contrast to loss of importin β (Kap95p/Rsl1p) and transportin (Kap104p), conditional loss of Pse1p in a strain lacking Kap123p results in a specific block of mRNA export from the nucleus. Overexpression of Sxm1p, a protein related to Cse1p in yeast and to the human cellular apoptosis susceptibility protein, relieves the defects of cells lacking Pse1p and Kap123p. Thus, a major role of Pse1p, Kap123p, and Sxm1p may be nuclear export rather than import, suggesting a symmetrical relationship between these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified and molecularly characterized a human protein with a Mr of 40,880 Da. After UV irradiation of HeLa cells, this protein was cross-linked to poly(A)-containing mRNA and was therefore designated mrnp 41 (for mRNA binding protein of 41 kDa). Cell fractionation and immunoblotting showed mrnp 41 in both the cytoplasm and the nucleus and particularly in the nuclear envelope. Immunofluorescence microscopy localized mrnp 41 to distinct foci in the nucleoplasm, to the nuclear rim, and to meshwork-like structures throughout the cytoplasm. The cytoplasmic meshwork staining was disrupted by prior treatment of cells with the actin filament- or microtubule-disrupting drugs cytochalasin or nocodazole, respectively, suggesting association of mrnp 41 with the cytoskeleton. Double immunofluorescence with antibodies against mrnp 41 and the cytoplasmic poly(A) binding protein showed colocalization to the cytoplasmic meshwork. Immunogold electronmicroscopy confirmed mrnp 41’s cytoplasmic and nucleoplasmic localization and revealed a striking labeling of nuclear pore complexes. Together these data suggest that mrnp 41 may function in nuclear export of mRNPs and/or in cytoplasmic transport on, or attachment to, the cytoskeleton. Consistent with a role of mrnp 41 in nuclear export are previous reports that mutations in homologs of mrnp 41 in Schizosaccharomyces pombe, designated Rae1p, or in Saccharomyces cerevisiae, designated Gle2p, result in mRNA accumulation in the nucleus although it is presently not known whether these homologs are mRNA binding proteins as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed information regarding the contribution of individual γ-aminobutyric acid (GABA)-containing inhibitory neurons to the overall synaptic activity of single postsynaptic cells is essential to our understanding of fundamental elements of synaptic integration and operation of neuronal circuits. For example, GABA-containing cells in the thalamic reticular nucleus (nRt) provide major inhibitory innervation of thalamic relay nuclei that is critical to thalamocortical rhythm generation. To investigate the contribution of individual nRt neurons to the strength of this internuclear inhibition, we obtained whole-cell recordings of unitary inhibitory postsynaptic currents (IPSCs) evoked in ventrobasal thalamocortical (VB) neurons by stimulation of single nRt cells in rat thalamic slices, in conjunction with intracellular biocytin labeling. Two types of monosynaptic IPSCs could be distinguished. “Weak” inhibitory connections were characterized by a significant number of postsynaptic failures in response to presynaptic nRt action potentials and relatively small IPSCs. In contrast, “strong” inhibition was characterized by the absence of postsynaptic failures and significantly larger unitary IPSCs. By using miniature IPSC amplitudes to infer quantal size, we estimated that unitary IPSCs associated with weak inhibition resulted from activation of 1–3 release sites, whereas stronger inhibition would require simultaneous activation of 5–70 release sites. The inhibitory strengths were positively correlated with the density of axonal swellings of the presynaptic nRt neurons, an indicator that characterizes different nRt axonal arborization patterns. These results demonstrate that there is a heterogeneity of inhibitory interactions between nRt and VB neurons, and that variations in gross morphological features of axonal arbors in the central nervous system can be associated with significant differences in postsynaptic response characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleus accumbens, a site within the ventral striatum, is best known for its prominent role in mediating the reinforcing effects of drugs of abuse such as cocaine, alcohol, and nicotine. Indeed, it is generally believed that this structure subserves motivated behaviors, such as feeding, drinking, sexual behavior, and exploratory locomotion, which are elicited by natural rewards or incentive stimuli. A basic rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. It is likely, therefore, that the nucleus accumbens may serve as a substrate for reinforcement learning. However, there is surprisingly little information concerning the neural mechanisms by which appetitive responses are learned. In the present study, we report that treatment of the nucleus accumbens core with the selective competitive N-methyl-d-aspartate (NMDA) antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol/0.5 μl bilaterally) impairs response-reinforcement learning in the acquisition of a simple lever-press task to obtain food. Once the rats learned the task, AP-5 had no effect, demonstrating the requirement of NMDA receptor-dependent plasticity in the early stages of learning. Infusion of AP-5 into the accumbens shell produced a much smaller impairment of learning. Additional experiments showed that AP-5 core-treated rats had normal feeding and locomotor responses and were capable of acquiring stimulus-reward associations. We hypothesize that stimulation of NMDA receptors within the accumbens core is a key process through which motor responses become established in response to reinforcing stimuli. Further, this mechanism, may also play a critical role in the motivational and addictive properties of drugs of abuse.