746 resultados para parallel kinematic machine
Resumo:
Between 1895 and 1910 Barcelona saw a whole range of social, political and cultural changes due to the increasingly important emergence of the working masses. At the same time, the cinema arrived in Catalonia, becoming very quickly one of the favorite entertainments of the urban laboring population which was about creating a new culture opposed to the modernist and nineteenth-century elite .This is, broadly speaking, the context that serves as a starting point for a study of the role of cinema in shaping a mass audience in Barcelona, an analysis centered on new urban spaces intended for the leisure of the lower classes emerged with the birth of modern Barcelona, especially the “Paral•lel” avenue, whose opening in 1894 made even more apparent the great social tensions and existing inequalities in Barcelona’s society at the end of the century.
Resumo:
One of the main challenges for developers of new human-computer interfaces is to provide a more natural way of interacting with computer systems, avoiding excessive use of hand and finger movements. In this way, also a valuable alternative communication pathway is provided to people suffering from motor disabilities. This paper describes the construction of a low cost eye tracker using a fixed head setup. Therefore a webcam, laptop and an infrared lighting source were used together with a simple frame to fix the head of the user. Furthermore, detailed information on the various image processing techniques used for filtering the centre of the pupil and different methods to calculate the point of gaze are discussed. An overall accuracy of 1.5 degrees was obtained while keeping the hardware cost of the device below 100 euros.
Resumo:
[EU]Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen- probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta testuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen baliagarritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio propio bat dutenak semantika distribuzionalaren arloan.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
The EP2025 EDS project develops a highly parallel information server that supports established high-value interfaces. We describe the motivation for the project, the architecture of the system, and the design and application of its database and language subsystems. The Elipsys logic programming language, its advanced applications, EDS Lisp, and the Metal machine translation system are examined.
Resumo:
We investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from near-Earth satellites. We show that scatter, but no net bias, is introduced by the kinematic “bunching effect” on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 × 1016 Wb in 1987 to close to half that value (1.98 × 1016 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.