890 resultados para paper-based DGT
Resumo:
Over the last decade, system integration has grown in popularity as it allows organisations to streamline business processes. Traditionally, system integration has been conducted through point-to-point solutions – as a new integration scenario requirement arises, a custom solution is built between the relevant systems. Bus-based solutions are now preferred, whereby all systems communicate via an intermediary system such as an enterprise service bus, using a common data exchange model. This research investigates the use of a common data exchange model based on open standards, specifically MIMOSA OSA-EAI, for asset management system integration. A case study is conducted that involves the integration of processes between a SCADA, maintenance decision support and work management system. A diverse number of software platforms are employed in developing the final solution, all tied together through MIMOSA OSA-EAI-based XML web services. The lessons learned from the exercise are presented throughout the paper.
Resumo:
Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.
Resumo:
The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
This paper reports on the development of a school-based intervention to reduce risk-taking and associated injuries. There is limited but important evidence that intervention design should ensure participation does not lead to an increase in target risk behaviors with some studies in alcohol and drug prevention finding unexpected negative effects. The short-term evaluation of Skills for Preventing Injury in Youth (SPIY) examined change in interpersonal violence, alcohol and transport-related risks. Intervention (n = 360) and comparison (n = 180) students were surveyed pre/post-intervention. A qualitative analysis based on focus groups (70 students) explored experiences of change. Findings indicate significant positive changes reinforced by students’ reports. A decrease in reported risk-taking for the intervention group and an increase in the comparison group were observed. These findings endorse SPIY as a useful curriculum approach to reducing injuries and lend support to the future conduct of a long-term outcome evaluation.
Resumo:
This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
Cycling provides a number of health and environmental benefits. However, cyclists are more likely to suffer serious injury or be killed in traffic accidents than car drivers and the estimated cost of crashes in Australia is $1.25AU billion per year. Current interventions to reduce bicycle crashes include compulsory helmet use, media campaigns, and the provision of cycling lanes, as well as road user education and training. It is difficult to assess the effectiveness of current interventions as there is no accurate measure of cyclist exposure in South East Queensland (SEQ). This paper analyses cyclist crash characteristics in Queensland with the view to identifying appropriate Intelligent Transport Systems (ITS) based intervention to reduce cyclist injury and death. The inappropriateness of some ITS interventions to improve cyclist safety is highlighted and a set of ITS interventions are identified, based on Queensland crash data 2002-2006.
Resumo:
In a power network, when a propagation energy wave caused by a disturbance hits a weak link, a reflection is appeared and some of energy is transferred across the link. In this work, an analytical descriptive methodology is proposed to study the dynamical stability of a large scale power system. For this purpose, the measured electrical indices (angle, or voltage/frequency) following a fault in different points among the network are used, and the behaviors of the propagated waves through the lines, nodes and buses are studied. This work addresses a new tool for power system stability analysis based on a descriptive study of electrical measurements. The proposed methodology is also useful to detect the contingency condition and synthesis of an effective emergency control scheme.
Resumo:
Appearance-based mapping and localisation is especially challenging when separate processes of mapping and localisation occur at different times of day. The problem is exacerbated in the outdoors where continuous change in sun angle can drastically affect the appearance of a scene. We confront this challenge by fusing the probabilistic local feature based data association method of FAB-MAP with the pose cell filtering and experience mapping of RatSLAM. We evaluate the effectiveness of our amalgamation of methods using five datasets captured throughout the day from a single camera driven through a network of suburban streets. We show further results when the streets are re-visited three weeks later, and draw conclusions on the value of the system for lifelong mapping.
Resumo:
We provide the first description of and security model for authenticated key exchange protocols with predicate-based authentication. In addition to the standard goal of session key security, our security model also provides for credential privacy: a participating party learns nothing more about the other party's credentials than whether they satisfy the given predicate. Our model also encompasses attribute-based key exchange since it is a special case of predicate-based key exchange.---------- We demonstrate how to realize a secure predicate-based key exchange protocol by combining any secure predicate-based signature scheme with the basic Diffie-Hellman key exchange protocol, providing an efficient and simple solution.
Resumo:
Purpose: Although the branding literature emerged during the 1940s, research relating to tourism destination branding has only gained momentum since the late 1990s. There remains a lack of theory in particular that addresses the measurement of the effectiveness of destination branding over time. The purpose of the research was to test the effectiveness of a model of consumer-based brand equity (CBBE) for a country destination.---------- Design/methodology: A model of consumer-based brand equity was adapted from the marketing literature and applied to a nation context. The model was tested by using structural equation modelling with data from a large Chilean sample (n=845), comprising a mix of previous visitors and non-visitors. The model fits the data well. Findings: This paper reports the results of an investigation into brand equity for Australia as a long haul destination in an emerging market. The research took place just before the launch of the nation’s fourth new brand campaign in six years. The results indicate Australia is a well known but not compelling destination brand for tourists in Chile, which reflects the lower priority the South American market has been given by the national tourism office (NTO).---------- Practical implications: It is suggested that CBBE measures could be analysed at various points in time to track any strengthening or weakening of market perceptions in relation to brand objectives. A standard CBBE instrument could provide long-term effectiveness performance measures regardless of changes in destination marketing organisation (DMO) staff, advertising agency, other stakeholders, and budget.---------- Originality/value: This study contributes to the nation-branding literature by being one of the first to test the efficacy of a model of consumer-based brand equity for a tourism destination brand.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
In this paper an attempt is made to identify the socioeconomic characteristics of a community that influences the development and management of culture-based fisheries in village reservoirs of Sri Lanka. Socioeconomic data were collected from 46 agricultural farming communities associated with 47 village reservoirs in Sri Lanka. Principal component analysis indicated that scores of the first principal component were positively influenced by socioeconomic characteristics that are favorable for making collective decisions. These included leadership of the officers, age of the group, percentage of active members of the group, percentage of kinship of the group, percentage of common interest of the group, and percentage of participation of the group. The size of the group had negative effect on the first principal component. The principal component scores of communication were positively related to willingness to pay (P< 0.001). The communities with socioeconomic characteristics favouring collective decision making were in favor of culture-based fisheries. Homogeneity of group characteristics facilitated successful development of culture-based fisheries.
Resumo:
This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.