942 resultados para oscillatory breathing
Resumo:
OBJECTIVE: The optimal coronary MR angiography sequence has yet to be determined. We sought to quantitatively and qualitatively compare four coronary MR angiography sequences. SUBJECTS AND METHODS. Free-breathing coronary MR angiography was performed in 12 patients using four imaging sequences (turbo field-echo, fast spin-echo, balanced fast field-echo, and spiral turbo field-echo). Quantitative comparisons, including signal-to-noise ratio, contrast-to-noise ratio, vessel diameter, and vessel sharpness, were performed using a semiautomated analysis tool. Accuracy for detection of hemodynamically significant disease (> 50%) was assessed in comparison with radiographic coronary angiography. RESULTS: Signal-to-noise and contrast-to-noise ratios were markedly increased using the spiral (25.7 +/- 5.7 and 15.2 +/- 3.9) and balanced fast field-echo (23.5 +/- 11.7 and 14.4 +/- 8.1) sequences compared with the turbo field-echo (12.5 +/- 2.7 and 8.3 +/- 2.6) sequence (p < 0.05). Vessel diameter was smaller with the spiral sequence (2.6 +/- 0.5 mm) than with the other techniques (turbo field-echo, 3.0 +/- 0.5 mm, p = 0.6; balanced fast field-echo, 3.1 +/- 0.5 mm, p < 0.01; fast spin-echo, 3.1 +/- 0.5 mm, p < 0.01). Vessel sharpness was highest with the balanced fast field-echo sequence (61.6% +/- 8.5% compared with turbo field-echo, 44.0% +/- 6.6%; spiral, 44.7% +/- 6.5%; fast spin-echo, 18.4% +/- 6.7%; p < 0.001). The overall accuracies of the sequences were similar (range, 74% for turbo field-echo, 79% for spiral). Scanning time for the fast spin-echo sequences was longest (10.5 +/- 0.6 min), and for the spiral acquisitions was shortest (5.2 +/- 0.3 min). CONCLUSION: Advantages in signal-to-noise and contrast-to-noise ratios, vessel sharpness, and the qualitative results appear to favor spiral and balanced fast field-echo coronary MR angiography sequences, although subjective accuracy for the detection of coronary artery disease was similar to that of other sequences.
Resumo:
AbstractPerforming publicly has become increasingly important in a variety of professions. This condition is associated with performance anxiety in almost all performers. Whereas some performers successfully cope with this anxiety, for others it represents a major problem and even threatens their career. Musicians and especially music students were shown to be particularly affected by performance anxiety.Therefore, the goal of this PhD thesis was to gain a better understanding of performance anxiety in university music students. More precisely, the first part of this thesis aimed at increasing knowledge on the occurrence, the experience, and the management of performance anxiety (Article 1). The second part aimed at investigating the hypothesis that there is an underlying hyperventilation problem in musicians with a high level of anxiety before a performance. This hypothesis was addressed in two ways: firstly, by investigating the association between the negative affective dimension of music performance anxiety (MPA) and self-perceived physiological symptoms that are known to co-occur with hyperventilation (Article 2) and secondly, by analyzing this association on the physiological level before a private (audience-free) and a public performance (Article 3). Article 4 places some key variables of Article 3 in a larger context by jointly analyzing the phases before, during, and after performing.The main results of the self-report data show (a) that stage fright is experienced as a problem by one-third of the surveyed students, (b) that the students express a considerable need for more help to better cope with it, and (c) that there is a positive association between negative feelings of MPA and the self-reported hyperventilation complaints before performing. This latter finding was confirmed on the physiological level in a tendency of particularly high performance-anxious musicians to hyperventilate. Furthermore, the psycho-physiological activation increased from a private to a public performance, and was higher during the performances than before or after them. The physiological activation was mainly independent of the MPA score. Finally, there was a low response coherence between the actual physiological activation and the self-reports on the instantaneous anxiety, tension, and perceived physiological activation.Given the high proportion of music students who consider stage fright as a problem and given the need for more help to better cope with it, a better understanding of this phenomenon and its inclusion in the educational process is fundamental to prevent future occupational problems. On the physiological level, breathing exercises might be a good means to decrease - but also to increase - the arousal associated with a public performance in order to meet an optimal level of arousal needed for a good performance.
Resumo:
Purpose: To evaluate the use of high frequency jet ventilation (HFJV) in patients undergoing percutanous thermal ablation procedures.Materials: From may to september 2011 patients with lung, liver or kidney tumors suitable for percutanous thermal ablation were prospectively enrolled to be treated under general anesthesia using HFJV instead of conventional positive pressure ventilation (PPV). Our primary endpoint was feasability of HFJV during percutanous ablation, our secondary endpoints were assessment of breathing related movements by image fusion (CT/US), precision and ease of needle placement by number of CT aquisition/needle reposition and procedure related complications.Results: Twenty-nine patients (21 males, 8 females mean age 66.2 years) with 30 liver tumors, 1 kidney tumors and 6 lung tumors were included. Tumor ablation was performed by radiofrequency (RFA) in 26 cases, microwaves ( MWA) in 2 and cryoablation (CRA) in 1. The ablation procedure could be completed under HFJV in 22 patients. In 2 patients HFVJ had to be stopped in favor of PPV because the tumor was better seen under PPV. HFJV was not performed in 5. Breathing related movements of the target lesion in the cranio-caudal direction as estimated by image fusion were always inferior to 5mm compared to 20mm when patients are under PPV. Needle placement was straightforward under CT as well as US. No patient needed needle repositionning before ablation. We did not observe any HFJV related complications.Conclusions: HFJV significantly reduces breathing movements of target lesion during percutaneous ablation procedures. It does not seem to cause any particular complication. However in some cases such as tumors located at the base of the lungs or in the dome of the liver, the target may be best seen under PPV.
Resumo:
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
Resumo:
INTRODUCTION: Mutations in the TMEM70 are the most common cause of nuclear ATP synthase deficiency resulting in a distinctive phenotype characterized by severe neonatal hypotonia, hypertrophic cardiomyopathy (HCMP), facial dysmorphism, severe lactic acidosis, hyperammonemia and 3-methylglutaconic aciduria (3-MGA). METHODS AND RESULTS: We collected 9 patients with genetically confirmed TMEM70 defect from 8 different families. Six were homozygous for the c.317-2A>G mutation, 2 were compound heterozygous for mutations c.317-2A>G and c.628A>C and 1 was homozygous for the novel c.701A>C mutation. Generalized hypotonia, lactic acidosis, hyperammonemia and 3-MGA were present in all since birth. Five patients presented acute respiratory distress at birth requiring intubation and ventilatory support. HCMP was detected in 5 newborns and appeared a few months later in 3 additional children. Five patients showed a severe and persistent neonatal pulmonary hypertension (PPHN) requiring Nitric Oxide (NO) and/or sildenafil administration combined in 2 cases with high-frequency oscillatory (HFO) ventilation. In 3 of these patients, echocardiography detected signs of HCMP at birth. CONCLUSIONS: PPHN is a life-threatening poorly understood condition with bad prognosis if untreated. Pulmonary hypertension has rarely been reported in mitochondrial disorders and, so far, it has been described in association with TMEM70 deficiency only in one patient. This report further expands the clinical and genetic spectrum of the syndrome indicating PPHN as a frequent and life-threatening complication regardless of the type of mutation. Moreover, in these children PPHN appears even in the absence of an overt cardiomyopathy, thus representing an early sign and a clue for diagnosis.
Resumo:
STUDY OBJECTIVE; To evaluate interactive effects of volemic status and positive end-expiratory pressure (PEEP) on the plasma levels of atrial natriuretic factor (ANF) in assist-controlled mechanical ventilation (MV). DESIGN: Three successive protocols applied in randomized order to each participant. SETTING: Clinical investigation laboratory. PARTICIPANTS: Twenty-one young, healthy adults. INTERVENTIONS: The three protocols were as follows: (1) MV+PEEP, normovolemia; (2) MV+PEEP, hypervolemia; and (3) spontaneous breathing (SB), hypervolemia. In protocols 1 and 2, a preliminary period of SB lasting 2 h was followed by MV alone (0.5 h), MV+20 cm H2O PEEP (1 h), and a recovery period of SB (1.5 h). Hypervolemia was induced by the continuous i.v. infusion of 3 L of 0.9% NaCl in 5 h (protocols 2 and 3). MEASUREMENTS AND RESULTS: Heart rate, BP, and the plasma levels of immunoreactive ANF and catecholamines were measured serially. During hypervolemia, ANF significantly decreased when PEEP was added to MV (protocol 2: from 31.1 +/- 2.7 to 20.7 +/- 1.5 fmol/mL; p < 0.01). This did not occur in normovolemia (protocol 1: from 20.0 +/- to 16.7 +/- 1.2 fmol/mL; p = NS). The different effects of MV+PEEP in normovolemia and hypervolemia were not related to differences in circulating catecholamine levels. CONCLUSIONS: These results demonstrate for the first time (to our knowledge) that volemic status modulates the response of plasma ANF to PEEP in humans. The role of ANF in the water and salt retention induced by MV with PEEP might be limited to hypervolemic conditions.
Resumo:
Conventional coronary magnetic resonance angiography (MRA) techniques display the coronary blood-pool along with the surrounding structures, including the myocardium, the ventricular and atrial blood-pool, and the great vessels. This representation of the coronary lumen is not directly analogous to the information provided by x-ray coronary angiography, in which the coronary lumen displayed by iodinated contrast agent is seen. Analogous "luminographic" data may be obtained using MR arterial spin tagging (projection coronary MRA) techniques. Such an approach was implemented using a 2D selective "pencil" excitation for aortic spin tagging in concert with a 3D interleaved segmented spiral imaging sequence with free-breathing, and real-time navigator technology. This technique allows for selective 3D visualization of the coronary lumen blood-pool, while signal from the surrounding structures is suppressed.
Resumo:
Ophiolites occur at several places in the Lower Penninic of the W and Central Alps. They are generally ascribed to oceanic crust of a so-called ``Valais ocean'' of Cretaceous age which plays a fundamental role in many models of Alpine paleogeography and geodynamics. The type locality and only observational base for the definition of a ``Valais ocean'' in the W Alps is the Versoyen ophiolitic complex, on the French-Italian boundary W of the Petit St-Bernard col. The idea of a "Valais ocean'' is based on two propositions that are since 40 years the basis for most reconstructions of the Lower Penninic: (1) The Versoyen forms the (overturned) stratigraphic base of the Cretaceous-Tertiary Valais-Tarentaise series; and (2) it has a Cretaceous age. We present new field and isotopic data that severely challenge both propositions. (1) The base of the Versoyen ophiolite is a thrust. It overlies a wildflysch with blocks of Versoyen rocks, named the Mechandeur Formation. This ``supra-Tarentaise'' wildflysch has been confused with an (overturned) stratigraphic transition from the Versoyen to the Valais-Tarentaise series. Thus the contact Versoyen/Tarentaise is not stratigraphic but tectonic, and the Versoyen ophiolite has no link with the Valais basin. This thrust corresponds to an inverse metamorphic discontinuity and to an abrupt change in tectonic style. (2) The contact of the Versoyen complex with the overlying Triassic-Jurassic Petit St-Bernard (PSB) series is stratigraphic (and not tectonic as admitted by all authors since 50 years). Several types of sedimentary structures polarize it and show that the PSB series is younger than the Versoyen. Consequently the Versoyen ophiolitic complex is Paleozoic and forms the basement of the PSB Mesozoic sediments. They both belong to a single tectonic unit, named the Versoyen-Petit St-Bernard nappe. (3) Ion microprobe U-Pb isotopic data on zircons from the main gabbroic intrusion in the Versoyen complex give a crystallization age of 337.0 +/- 4.1 Ma (Visean, Early Carboniferous). These zircons show typical oscillatory zoning and no overgrowth or corrosion. and are interpreted to date the Versoyen magmatism. These U-Pb data are in excellent agreement with our field observations and confirm the Paleozoic age of the Versoyen ophiolite. The existence of a ``Valais ocean'' of Cretaceous age in the W Alps becomes very improbable. The eclogite facies metamorphism of the Versoyen-Petit St-Bernard nappe results from an Alpine intra-continental subduction, guided by a Paleozoic oceanic suture. This is an example of the lone term influence of inherited deep-seated structures on a Much younger orogeny. This might well be a major cause of of the inherent complexity of the Alps.
Resumo:
Background: Respiratory care is universally recognised as useful, but its indications and practice vary markedly. In order to improve appropriateness of respiratory care in our hospital, we developed evidence-based local guidelines in a collaborative effort involving physiotherapists, physicians, and health services researchers. Methods: Recommendations were developed using the standardised RAND appropriateness method. A literature search was performed for the period between 1995 and 2008 based on terms associated with guidelines and with respiratory care. Publications were assessed according to the Oxford classification of quality of evidence. A working group prepared proposals for recommendations which were then independently rated by a multidisciplinary expert panel. All recommendations were then discussed in common and indications for procedures were rated confidentially a second time by the experts. Each indication for respiratory care was classified as appropriate, uncertain, or inappropriate, based on the panel median rating and the degree of intra-panel agreement. Results: Recommendations were formulated for the following procedures: non-invasive ventilation, continuous positive airway pressure, intermittent positive pressure breathing, intrapulmonary percussive ventilation, mechanical insufflation-exsufflation, incentive spirometry, positive expiratory pressure, nasotracheal suctioning, noninstrumental airway clearance techniques. Each recommendation referred to a particular medical condition, and was assigned to a hierarchical category based on the quality of evidence from literature supporting the recommendation and on the consensus of experts. Conclusion: Despite a marked heterogeneity of scientific evidence, the method used allowed us to develop commonly agreed local guidelines for respiratory care. In addition, this work fostered a closer relationship between physiotherapists and physicians in our institution.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.
Resumo:
Due to SNR constraints, current "bright-blood" 3D coronary MRA approaches still suffer from limited spatial resolution when compared to conventional x-ray coronary angiography. Recent 2D fast spin-echo black-blood techniques maximize signal for coronary MRA at no loss in image spatial resolution. This suggests that the extension of black-blood coronary MRA with a 3D imaging technique would allow for a further signal increase, which may be traded for an improved spatial resolution. Therefore, a dual-inversion 3D fast spin-echo imaging sequence and real-time navigator technology were combined for high-resolution free-breathing black-blood coronary MRA. In-plane image resolution below 400 microm was obtained. Magn Reson Med 45:206-211, 2001.
Resumo:
Purpose of the study: Basic life support (BLS) and automated externaldefibrillation (AED) represent important skills to be acquired duringpregraduate medical training. Since 3 years, our medical school hasintroduced a BLS-AED course (with certification) for all second yearmedical students. Few reports about quality and persistence over timeof BLS-AED learning are available to date in the medical literature.Comprehensive evaluation of students' acquired skills was performedat the end of the 2008 academic year, 6 month after certification.Materials and methods: The students (N = 142) were evaluated duringa 9 minutes «objective structured clinical examination» (OSCE) station.Out of a standardized scenario, they had to recognize a cardiac arrestsituation and start a resuscitation process. Their performance wererecorded on a PC using an Ambuman(TM) mannequin and the AmbuCPR software kit(TM) during a minimum of 8 cycles (30 compressions:2 ventilations each). BLS parameters were systematically checked. Nostudent-rater interactions were allowed during the whole evaluation.Results: Response of the victim was checked by 99% of the students(N = 140), 96% (N = 136) called for an ambulance and/or an AED. Openthe airway and check breathing were done by 96% (N = 137), 92% (N =132) gave 2 rescue breaths. Pulse was checked by 95% (N=135), 100%(N = 142) begun chest compression, 96% (N = 136) within 1 minute.Chest compression rate was 101 ± 18 per minute (mean ± SD), depthcompression 43 ± 8 mm, 97% (N = 138) respected a compressionventilationratio of 30:2.Conclusions: Quality of BLS skills acquisition is maintained during a6-month period after a BLS-AED certification. Main targets of 2005 AHAguidelines were well respected. This analysis represents one of thelargest evaluations of specific BLS teaching efficiency reported. Furtherfollow-up is needed to control the persistence of these skills during alonger time period and noteworthy at the end of the pregraduatemedical curriculum.
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
Previous research has demonstrated covariation of physiological responding with judgments of valence and arousal. However, until now links between these affective dimensions and respiratory measures have not been extensively investigated. In this study, eight picture series of different affective valence and arousal level were shown to 30 subjects, while respiration, skin conductance level (SCL), heart rate (HR) and affective judgments were measured. With increasing pleasantness, inspiratory time lengthened, mean inspiratory flow decreased and thoracic breathing increased. With increasing arousal, inspiratory time and total breath duration shortened and mean inspiratory flow, minute ventilation, thoracic breathing and electrodermal activity increased. These findings confirm the importance of arousal in respiratory responding, but also indicate a modulatory role of affective valence.We propose that the arousal effects reflect energy mobilization in preparation to act, and thatthe valence effects might be a manifestation of an attention bias toward negative stimuli. [Authors]
Resumo:
RATIONALE AND OBJECTIVES: Recent developments of magnetic resonance imaging enabled free-breathing coronary MRA (cMRA) using steady-state-free-precession (SSFP) for endogenous contrast. The purpose of this study was a systematic comparison of SSFP cMRA with standard T2-prepared gradient-echo and spiral cMRA. METHODS: Navigator-gated free-breathing T2-prepared SSFP-, T2-prepared gradient-echo- and T2-prepared spiral cMRA was performed in 18 healthy swine (45-68 kg body-weight). Image quality was investigated subjectively and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness were compared. RESULTS: SSFP cMRA allowed for high quality cMRA during free breathing with substantial improvements in SNR, CNR and vessel sharpness when compared with standard T2-prepared gradient-echo imaging. Spiral imaging demonstrated the highest SNR while image quality score and vessel definition was best for SSFP imaging. CONCLUSION: Navigator-gated free-breathing T2-prepared SSFP cMRA is a promising new imaging approach for high signal and high contrast imaging of the coronary arteries with improved vessel border definition.