928 resultados para organic peroxide
Resumo:
This thesis describes the occurrence and sources of selected persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorocyclohexanes (HCHs) in the northern watershed of Lake Victoria. Sediments and fish were collected from three highly polluted embayments (i.e. Murchison Bay, Napoleon Gulf and Thurston Bay) of the lake. The analysis for PCDD/Fs, PCBs and PBDEs was done using a high resolution mass spectrometer coupled to a gas chromatograph (GC), and a GC equipped with an electron capture detector was used for HCHs. Total (Σ) PCDD/Fs, PCBs and PBDEs in sediments ranged from 3.19 to 478, 313 to 4325 and 60.8 to 179 pg g-1 dry weight (dw), respectively. The highest concentrations of pollutants were found at sites close to industrial areas and wastewater discharge points. The maximum concentrations of PCDD/Fs, PCBs, PBDEs and HCHs in fish muscle homogenates were 49, 779, 495 and 45,900 pg g-1 wet weight (ww), respectively. The concentrations of the pollutants in Nile perch (Lates niloticus) were significantly greater than those in Nile tilapia (Oreochromis niloticus), possibly due to differences in trophic level and dietary feeding habits among fish species. World Health Organization-toxic equivalency quotient (WHO2005-TEQ) values in the sediments were up to 4.24 pg g-1 dw for PCDD/Fs and 0.55 pg TEQ g-1 dw for the 12 dioxin-like PCBs (dl-PCBs). 23.1% of the samples from the Napoleon Gulf were above the interim sediment quality guideline value of 0.85 pg WHO-TEQ g-1 dw set by the Canadian Council for Ministers of the Environment. The WHO2005-TEQs in fish were 0.001-0.16 pg g-1 for PCDD/Fs and 0.001-0.31 pg g-1 ww for dl- PCBs. The TEQ values were within a permissible level of 3.5 pg g−1 ww recommended by the European Commission. Based on the Commission set TEQs and minimum risk level criteria formulated by the Agency for Toxic Substances and Disease Registry, the consumption of fish from Lake Victoria gives no indication of health risks associated to PCDD/Fs and PCBs. Principal component analysis (PCA) indicated that anthropogenic activities such as agricultural straw open burning, medical waste incinerators and municipal solid waste combustors were the major sources of PCDD/Fs in the watershed of Lake Victoria. The ratios of α-/γ-HCH varied from 0.89 to 1.68 suggesting that the highest HCH residues mainly came from earlier usage and fresh γ-HCH (lindane). In the present study, the concentration of POPs in fish were not significantly related to those in sediments, and the biota sediment accumulation factor (BSAF) concept was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants.
Resumo:
We evaluated the protein quality of organic and transgenic soy fed to rats throughout life. Thirty female Wistar rats were divided into three groups (N = 10): organic soy group (OSG) receiving organic soy-based diet, genetically modified soy group (GMSG) receiving transgenic soy-based diet, and a control group (CG) receiving casein-based diet. All animals received water and isocaloric diet (10% protein), ad libitum for 291 days. After this, the weight of GMSG animals (290.9 ± 9.1 g) was significantly lower (P <= 0.04) than CG (323.2 ± 7.9 g). The weight of OSG (302.2 ± 8.7 g) was between that of the GMSG and the CG. Protein intake was similar for OSG (308.4 ± 6.8 g) and GMSG (301.5 ± 2.5 g), and significantly lower (P <= 0.0005) than the CG (358.4 ± 8.1 g). Growth rate was similar for all groups: OSG (0.80 ± 0.02 g), GMSG (0.81 ± 0.03 g) and CG (0.75 ± 0.02 g). In addition to providing a good protein intake and inducing less weight gain, both types of soy were utilized in a manner similar to that of casein, suggesting that the protein quality of soy is similar to that of the standard protein casein. The groups fed soy-based diet gained less weight, which may be considered to be beneficial for health. We conclude that organic and transgenic soy can be fed throughout life to rats in place of animal protein, because contain high quality protein and do not cause a marked increase in body weight.
Resumo:
The structure and optical properties of thin films based on C60
Resumo:
The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group) into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM) and delayed increase in DA levels (75 min after the beginning of perfusion). Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 ). These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.
Resumo:
The effects of H2O2 were evaluated in the estuarine worm Laeonereis acuta (Polychaeta, Nereididae) collected at the Patos Lagoon estuary (Southern Brazil) and maintained in the laboratory under controlled salinity (10 psu diluted seawater) and temperature (20°C). The worms were exposed to H2O2 (10 and 50 µM) for 4, 7, and 10 days and the following variables were determined: oxygen consumption, catalase (CAT) and glutathione peroxidase activity in both the supernatant and pellet fractions of whole body homogenates. The concentrations of non-protein sulfhydryl and lipid peroxides (LPO) were also measured. The oxygen consumption response was biphasic, decreasing after 4 days and increasing after 7 and 10 days of exposure to 50 µM H2O2 (P < 0.05). At the same H2O2 concentration, CAT activity was lower (P < 0.05) in the pellet fraction of worms exposed for 10 days compared to control. Non-protein sulfhydryl concentration and glutathione peroxidase activity were not affected by H2O2 exposure. After 10 days, LPO levels were higher (P < 0.05) in worms exposed to 50 µM H2O2 compared to control. The reduction in the antioxidant defense was paralleled by oxidative stress as indicated by higher LPO values (441% compared to control). The reduction of CAT activity in the pellet fraction may be related to protein oxidation. These results, taken together with previous findings, suggest that the worms were not able to cope with this H2O2 concentration.
Resumo:
Pretreatment of Escherichia coli cultures with the iron chelator 2,2’-dipyridyl (1 mM) protects against the lethal effects of low concentrations of hydrogen peroxide (<15 mM). However, at H2O2 concentrations equal to or greater than 15 mM, dipyridyl pretreatment increases lethality and mutagenesis, which is attributed to the formation of different types of DNA lesions. We show here that pretreatment with dipyridyl (1 mM) prior to challenge with high H2O2 concentrations (≥15 mM) induced mainly G:C→A:T transitions (more than 100X with 15 mM and more than 250X with 20 mM over the spontaneous mutagenesis rate) in E. coli. In contrast, high H2O2 concentrations in the absence of dipyridyl preferentially induced A:T→T:A transversions (more than 1800X and more than 300X over spontaneous mutagenesis for 15 and 20 mM, respectively). We also show that in the fpg nth double mutant, the rpoB gene mutation (RifS-RifR) induced by 20 mM H2O2 alone (20X higher) was increased in 20 mM H2O2 and dipyridyl-treated cultures (110X higher), suggesting additional and/or different lesions in cells treated with H2O2 under iron deprivation. It is suggested that, upon iron deprivation, cytosine may be the main damaged base and the origin of the pre-mutagenic lesions induced by H2O2.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.
Resumo:
Organic acids are present in sour cassava starch ("polvilho azedo") and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC) analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g), acetic (0 to 0.068 g/100g), propionic (0 to 0.013 g/100g) and butyric (0 to 0.057 g/100g), that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.
Resumo:
Cookies were prepared with the replacement of 20% of wheat flour by chemically (alkaline hydrogen peroxide) and physically (extrusion) treated oat hulls, with the objective to investigate the possibility of use of this modified material. Cookies elaborated with the untreated hulls were used as control. Cookies were evaluated for their physical (spread ratio, specific volume and color) and sensory characteristics, and no difference was detected (p<0.05) among the cookies in relation to the physical properties. Triangule test, used to verify difference (p<0.05) among treated and untreated cookies, confirmed the efficiency of the treatment in sensory level. The acceptance level of cookies with treated fiber was evaluated by potential consumers of the product, obtaining 91% acceptance. The cookies presented 10.6 g of dietary fiber per 100 g of product.
The Brazilian consumer's understanding and perceptions of organic vegetables: a Focus Group approach
Resumo:
Focus Group is a tool which generates, through interview sessions with a small number of participants, preliminary data to be used in subsequent quantitative stages. Many consumer studies use qualitative research with the aim of obtaining information and opinions on a specific product or situation. The objective of the present study was to obtain knowledge on the opinion, understanding and perception of the Brazilian consumer with respect to vegetables, focusing on organic products, using Focus Group Sessions. Four Focus Group Sessions were held with men and women in different environments, following a previously elaborated interview guide. In this study, it was observed that the consumers demonstrated being interested in having a healthy diet, based on fruit, vegetables and natural products. However, only a few declared consuming organic foods. Some participants did not know what the term organic meant, and most of them think that organic products are still very expensive, are not easily available in the supermarkets, do not have a good appearance, mainly in terms of size and packaging, and their certification is not always trustworthy. Almost all participants stated that they read package labels and among the items most observed were best-before date, nutritional information, production system and price. This study has identified important vegetable attributes perceived by the consumer, favouring the planning of a subsequent quantitative research. The results suggest that more information on the benefits of organic agriculture has to be passed on to consumers in order to contribute to a higher consumption of such products.
Resumo:
This research note addresses the role of organic solvent amount in the production of fatty acid ethyl esters from soybean oil. N-hexane was chosen as solvent and two commercial immobilized lipases as catalysts, Novozym 435 and Lipozyme IM. The reactions were conducted in 6 hours, varying the solvent to oil ratio from zero to 50 (v/wt) and adopting adopting for Novozym 435: 65 ºC, enzyme concentration (E, wt%) = 5, oil to ethanol molar ratio (R) = 1:10, water addition (H, wt%) = 0, and for Lipozyme IM: 35 ºC, E = 5 wt%, R = 1:3, H = 10 wt%. For Lipozyme IM, an increase in solvent amount is shown to lead to an enhancement of reaction conversion, while a negligible effect was found for Novozym 435. When using 30 mL of solvent the reaction conversions were 88% for Lipozyme IM and 15% for Novozym 435.
Resumo:
The artisanal production of cachaça, a beverage obtained by the fermentation of sugar cane juice after distillation, especially by small-sized producers, has traditionally used natural ferment ("fermento caipira") which consists of sugar cane juice with crushed corn, powdered rice, or citrus fruits. In despite of the difficulties in quality control due to the high level of contaminants and longer periods of preparation, the sensorial quality of the beverage may be attributed to the physiological activities of wild yeasts and even bacteria present during fermentation when this ferment is used. In this context, the aim here was to evaluate the microbiological (yeasts) and physicochemical characteristics of sugar cane juice extracted from different parts of three different varieties (RB72454, RB835486, and RB867515) of the cane stalk (lower, medium, and upper sections) in three harvesting periods (from May to December 2007) in an area under organic management. The juice from the upper section (from the eleventh internode to the top) of the sugar cane stalk could be indicated for the preparation of the natural ferment since it is as a source of yeasts and reducing sugars, especially the variety RB867515. Due to the seasonality, the best period for using this part of the sugar cane stalk is at the beginning of harvesting when the phenolic compounds are at low concentration, but there are higher number of Saccharomyces population and other yeast species. The high acidity in this section of the plant could result in a better control of bacterial contamination. These findings explain the traditional instructions of adding the upper sections for the preparation of natural ferment and can help its management in order to get a better performance with respect to organic cachaça production.
Resumo:
The aim of this study was to determine the influence of process parameters and Passion Fruit Fiber (PFF) addition on the Glycemic Index (GI) of an extruded breakfast cereal. A 2³ Central Composite Rotational Design (CCRD) was used, with the following independent variables: raw material moisture content (18-28%), 2nd and 3rd barrel zone temperatures (120-160 ºC), and PFF (0-30%). Raw materials (organic corn flour and organic PFF) were characterized as to their proximate composition, particle size, and in vitro GI. The extrudates were characterized as to their in vitro GI. The Response Surface Methodology (RSM) and Principal Component Analysis (PCA) were used to analyze the results. Corn flour and PFF presented 8.55 and 7.63% protein, 2.61 and 0.60% fat, 0.52 and 6.17% ash, 78.77 and 78.86% carbohydrates (3 and 64% total dietary fiber), respectively. The corn flour particle size distribution was homogeneous, while PFF presented a heterogeneous particle size distribution. Corn flour and PFF presented values of GI of 48 and 45, respectively. When using RSM, no effect of the variables was observed in the GI of the extrudates (average value of 48.41), but PCA showed that the GI tended to be lower when processing at lower temperatures (<128 ºC) and at higher temperatures (>158 ºC). When compared to white bread, the extrudates showed a reduction of the GI of up to 50%, and could be considered an interesting alternative in weight and glycemia control diets.