937 resultados para optimal power flow successive linear programming
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier.
Resumo:
We study whether privatization of a public firm improves (or deteriorates) the environment in a mixed Stackelberg duopoly with the public firm as the leader. We assume that each firm can prevent pollution by undertaking abatement measures. We get that, since in the mixed market the industry output is higher than in the private market, the abatement levels are also higher in the mixed market, and, thus, environmental tax rate in the mixed duopoly is higher than that in the privatized duopoly. Furthermore, the environment is more damaged in the mixed than in the private market. The overall effect on the social welfare is that it will becomes higher in the private than in the mixed market.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.
Resumo:
In this talk, we discuss a scheduling problem that originated at TAP - Maintenance & Engineering - the maintenance, repair and overhaul organization of Portugal’s leading airline. In the repair process of aircrafts’ engines, the operations to be scheduled may be executed on a certain workstation by any processor of a given set, and the objective is to minimize the total weighted tardiness. A mixed integer linear programming formulation, based on the flexible job shop scheduling, is presented here, along with computational experiment on a real instance, provided by TAP-ME, from a regular working week. The model was also tested using benchmarking instances available in literature.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
Resumo:
The operation of distribution networks has been facing changes with the implementation of smart grids and microgrids, and the increasing use of distributed generation. The specific case of distribution networks that accommodate residential buildings, small commerce, and distributed generation as the case of storage and PV generation lead to the concept of microgrids, in the cases that the network is able to operate in islanding mode. The microgrid operator in this context is able to manage the consumption and generation resources, also including demand response programs, obtaining profits from selling electricity to the main network. The present paper proposes a methodology for the energy resource scheduling considering power flow issues and the energy buying and selling from/to the main network in each bus of the microgrid. The case study uses a real distribution network with 25 bus, residential and commercial consumers, PV generation, and storage.
Resumo:
Este trabalho pretende resolver o problema das alocações de salas a exames no Departamento de Engenharia Mecânica do Instituto Superior de Engenharia do Porto. A solução desenvolvida atribui salas a exames respeitando as restrições de capacidade de salas e a restrição de realização dum único exame por sala num determinado período, por forma a minimizar a atribuição de salas e, consequentemente, docentes a exames. Foi criado um modelo matemático, que representa as variáveis relevantes do problema, e realiza a sua implementação numa plataforma informática amigável para o utilizador. O modelo matemático foi validado comparando as suas soluções com as obtidas através do processo manual. Os resultados do novo método demonstram a sua supremacia relativamente ao modelo atual. No futuro, poderá ser estudada a possibilidade de usar esta ferramenta na resolução do mesmo problema em realidades diferentes da do Departamento de Engenharia Mecânica do ISEP.
Resumo:
Nos tempos atuais as empresas que atuam no ramo dos sistemas elétricos de energias enfrentam desafios cada vez mais exigentes, dado o enquadramento normativo a que estão sujeitas por parte da entidade reguladora dos serviços energéticos. No caso do Arquipélago dos Açores, o normativo relativo ao regulamento da qualidade de serviço entrou em vigor em 2006, trazendo à EDA,S.A. (Eletricidade dos Açores), entidade responsável pelo transporte e distribuição de energia na região, novas exigências para adequados níveis de eficiência e de garantias aos clientes, no que respeita à qualidade de serviço que lhes é prestado. No âmbito deste trabalho, é efetuado o estudo do trânsito de potência sobre a rede distribuição 15 kV da ilha Graciosa. Para tal, é realizada a modelização da rede no software de rede elétricas porwerworld 8.0. e são idealizados um conjunto de cenários de exploração da rede, que visam simular situações reais que ocorrem na exploração diária da rede de distribuição da ilha. Nas simulações a efetuar consideram-se dois cenários com perfil de carga distintos, um referente à ponta máxima, e outro referente ao vazio mínimo, verificados no ano de 2014. Quanto ao modo de exploração da rede nos cenários a simular, é contemplado o modo de exploração normalmente operado pela empresa gestora, bem como diversas reconfigurações sobre o modo de exploração normalmente operado, realizadas através da abertura e fecho dos aparelhos de corte constituintes da rede. Em todos os cenários simulados, é realizado um estudo relativamente à potência de perdas do sistema, ao perfil da tensão nos diversos postos de transformação, e ao congestionamento de energia verificado nas linhas de distribuição da rede.