996 resultados para optical polishing machine
Resumo:
The optical, mechanical, and microstructural properties of MgF2 single layers grown by ion beam sputtering have been investigated by spectrophotometric measurements, film stress characterization, x-ray photoelectron spectroscopy (XPS), x-ray diffraction, and transmission electron microscopy. The deposition conditions, using fluorine reactive gas or not, have been found to greatly influence the optical absorption and the stress of the films as well as their microstructure. The layers grown with fluorine compensation exhibit a regular columnar microstructure and an UV-optical absorption which can be very low, either as deposited or after thermal annealings at very low temperatures. On the contrary, layers grown without fluorine compensation exhibit a less regular microstructure and a high ultraviolet absorption which is particularly hard to cure. On the basis of calculations, it is shown that F centers are responsible for this absorption, whereas all the films were found to be stoichiometric, in the limit of the XPS sensitivity. On the basis of external data taken from literature, our experimental curves are analyzed, so we propose possible diffusion mechanisms which could explain the behaviors of the coatings.
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.
Resumo:
Concentrated winding permanent magnet machines and their electromagnetic properties are studied in this doctoral thesis. The thesis includes a number of main tasks related to the application of permanent magnets in concentrated winding open slot machines. Suitable analytical methods are required for the first design calculations of a new machine. Concentrated winding machines differ from conventional integral slot winding machines in such a way that adapted analytical calculation methods are needed. A simple analytical model for calculating the concentrated winding axial flux machines is provided. The next three main design tasks are discussed in more detail in the thesis. The magnetic length of the rotor surface magnet machines is studied, and it is shown that the traditional methods have to be modified also in this respect. An important topic in this study has been to evaluate and minimize the rotor permanent magnet Joule losses by using segmented magnets in the calculations and experiments. Determination of the magnetizing and leakage inductances for a concentrated winding machine and the torque production capability of concentrated winding machines with different pole pair numbers are studied, and the results are compared with the corresponding properties of integral slot winding machines. The thesis introduces a new practical permanent magnet motor type for industrial use. The special features of the machine are based on the option of using concentrated winding open slot constructions of permanent magnet synchronous machines in the normal speed ranges of industrial motors, for instance up to 3000 min-1, without excessive rotor losses. By applying the analytical equations and methods introduced in the thesis, a 37 kW 2400 min-1 12-slot 10-pole axial flux machine with rotor-surfacemounted magnets is designed. The performance of the designed motor is determined by experimental measurements and finite element calculations.
Resumo:
In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.
Resumo:
The purpose of this study was to improve PM7’s basis weight CD profile in Stora Enso’s Berghuizer mill and to search mechanical defects which affect to the formation of the basis weight CD profile. In the theoretical part PM7’s structure was presented and the formation of the basis weight and caliper CD profiles was examined as well as disturbances which are affecting to the formation. The function of the control system was scrutinised for the side of CD profiles as well as the formation of the measured CD profiles. Tuning of the control system was examined through the response model and filtering. Specification of the response model and filtering was explained and how to determine 2sigma statistical number. In the end of the theoretical part ATPA hardware and a new profile browser were introduced. In the experimental part focus was in the beginning to search and remove mechanical defects which are affecting to CD profiles. The next step was to verify the reliability of the online measurements, to study the stability of the basis weight CD profile and to find out so called fingerprint, a basis weight CD profile which is unique for each paper machine. New response model and filtering value for basis weight CD profile was determined by bump tests. After a follow up period the affect of the new response model and filtering was analysed.
Resumo:
Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
The synthesis of gold nanoparticles (Au NPs) 15, 26, and 34 nm in diameter, followed by the investigation of their size-dependent optical and catalytic properties, is described herein as an undergraduate level experiment. The proposed experiment covers concepts on the synthesis, stabilization, and characterization of Au NPs, their size-dependent optical and catalytic properties at the nanoscale, chemical kinetics, and the role of a catalyst. The experiment should be performed by groups of two or three students in three lab sessions of 3 h each and organized as follows: i) synthesis of Au NPs of different sizes and investigation of their optical properties; ii) evaluation of their catalytic activity; and iii) data analysis and discussion. We believe that this activity enables students to integrate these multidisciplinary concepts in a single experiment as well as to become introduced/familiarized with an active research field and current literature in the areas of nanoparticle synthesis and catalysis.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
The topic of this thesis is the simulation of a combination of several control and data assimilation methods, meant to be used for controlling the quality of paper in a paper machine. Paper making is a very complex process and the information obtained from the web is sparse. A paper web scanner can only measure a zig zag path on the web. An assimilation method is needed to process estimates for Machine Direction (MD) and Cross Direction (CD) profiles of the web. Quality control is based on these measurements. There is an increasing need for intelligent methods to assist in data assimilation. The target of this thesis is to study how such intelligent assimilation methods are affecting paper web quality. This work is based on a paper web simulator, which has been developed in the TEKES funded MASI NoTes project. The simulator is a valuable tool in comparing different assimilation methods. The thesis contains the comparison of four different assimilation methods. These data assimilation methods are a first order Bayesian model estimator, an ARMA model based on a higher order Bayesian estimator, a Fourier transform based Kalman filter estimator and a simple block estimator. The last one can be considered to be close to current operational methods. From these methods Bayesian, ARMA and Kalman all seem to have advantages over the commercial one. The Kalman and ARMA estimators seems to be best in overall performance.
Resumo:
In the modern warfare there is an active development of a new trend connected with a robotic warfare. One of the critical elements of robotics warfare systems is an automatic target recognition system, allowing to recognize objects, based on the data received from sensors. This work considers aspects of optical realization of such a system by means of NIR target scanning at fixed wavelengths. An algorithm was designed, an experimental setup was built and samples of various modern gear and apparel materials were tested. For pattern testing the samples of actively arm engaged armies camouflages were chosen. Tests were performed both in clear atmosphere and in the artificial extremely humid and hot atmosphere to simulate field conditions.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
Kuljetettaessa täyteainetta pidempiä matkoja voidaan aikaan saada säästöjä, mikäli täyteaineliete valmistetaan korkeaan kuiva-ainepitoisuuteen. Dispergointiaineen avulla täyteainelietteen kuiva-ainepitoisuutta voidaan nostaa ilman, että menetetään täyteainelietteen virtausominaisuuksia. Dispergointiaineen tehtävänä on stabiloida täyteaineliete niin, että täyteainepartikkelit pysyvät lietteessä erillään, jolloin lietteen kuiva-ainepitoisuuden kasvattaminen on mahdollista. Täyteainepartikkelien agglomeroituminen estyy, kun dispergointiaine kiinnittyy täyteainepartikkelin pinnalle lisäten partikkelin sähkövarausta ja vahvistaen näin partikkeleiden välisiä repulsiovoimia. Dispergointi on mahdollista tehdä myös steerisellä stabiloinnilla. Yleisimmät käytössä olevat dispergointiaineet ovat polyakryylaatteja. Työssä tutkittiin MBF- laitteella valmistettujen arkkien avulla dispergoinnin vaikutusta täyteaineiden käyttäytymiseen ja paperin ominaisuuksiin. Dispergointiaineen todettiin heikentävän täyteaineen retentiota paperiin, sillä dispergointiaineen aiheuttama täyteaineen anionisuuden kasvu lisää kuidun ja täyteaineen välistä repulsiota. Dispergoitujen täyteaineiden käyttö vaatii retentioaineannoksen kasvattamista, mikä voi johtaa puolestaan formaation heikkenemiseen. Dispergointiaineen todettiin alentavan hienopaperin bulkkia, sillä paksuutta lisääviä agglomeraatteja esiintyi todennäköisesti vähemmän. Lisäksi dispergointiaineen havaittiin heikentävän hienopaperin ja TMP:stä valmistetun paperin optisia ominaisuuksia. Hienopaperilla dispergointiaineen käyttö puolestaan paransi paperin lujuusominaisuuksia. TMP- arkeilla bulkki ja lujuusominaisuudet muuttuivat dispergointiaineannostuksen myötä. 5 ‰:n dispergointiaineannostuksella päästiin samaan bulkkiin sekä lujuusominaisuuksiin kuin ei-dispergoidulla täyteaineella.
Resumo:
The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.