849 resultados para ocular paracoccidiodomycosis
Resumo:
BACKGROUND: We aimed to determine the prevalence and associations of refractive error on Norfolk Island. DESIGN: Population-based study on Norfolk Island, South Pacific. PARTICIPANTS: All permanent residents on Norfolk Island aged ≥ 15 years were invited to participate. METHODS: Patients underwent non-cycloplegic autorefraction, slit-lamp biomicroscope examination and biometry assessment. Only phakic eyes were analysed. MAIN OUTCOME MEASURES: Prevalence and multivariate associations of refractive error and myopia. RESULTS: There were 677 people (645 right phakic eyes, 648 left phakic eyes) aged ≥ 15 years were included in this study. Mean age of participants was 51.1 (standard deviation 15.7; range 15-81). Three hundred and seventy-six people (55.5%) were female. Adjusted to the 2006 Norfolk Island population, prevalence estimates of refractive error were as follows: myopia (mean spherical equivalent ≥ -1.0 D) 10.1%, hypermetropia (mean spherical equivalent ≥ 1.0 D) 36.6%, and astigmatism 17.7%. Significant independent predictors of myopia in the multivariate model were lower age (P < 0.001), longer axial length (P < 0.001), shallower anterior chamber depth (P = 0.031) and increased corneal curvature (P < 0.001). Significant independent predictors of refractive error were increasing age (P < 0.001), male gender (P = 0.009), Pitcairn ancestry (P = 0.041), cataract (P < 0.001), longer axial length (P < 0.001) and decreased corneal curvature (P < 0.001). CONCLUSIONS: The prevalence of myopia on Norfolk Island is lower than on mainland Australia, and the Norfolk Island population demonstrates ethnic differences in the prevalence estimates. Given the significant associations between refractive error and several ocular biometry characteristics, Norfolk Island may be a useful population in which to find the genetic basis of refractive error.
Resumo:
The acetylcholine receptor (AchR) antibody assay has a key role in the diagnosis of myasthenia gravis. In this article, the role of AchR antibody assay in the diagnosis of ocular and generalized myasthenia gravis is reviewed, and compared to standard means of diagnosing the disease by clinical and electrophysiological methods.
Resumo:
Results of 3 tests, intravenous edrophonium chloride, EMG, and acetylcholine receptor antibody testing, were compared in patients with generalised and ocular myasthenia gravis. None of the 3 tests was positive in any patient with a diagnosis other than myasthenia. However, equivocal results were obtained with edrophonium and EMG testing in some patients with myasthenia gravis and in patients with other diseases. It is concluded from this survey that antibody and edrophonium testing were equally efficient in detecting generalised myasthenia gravis. Edrophonium testing was superior in ocular myasthenia gravis. Although the yields from each test varied, all 3 tests were needed for the evaluation of some myasthenia gravis patients as each test may provide additional information.
Resumo:
The relationship of acetylcholine receptor (AchR) antibodies to disease activity in myasthenia gravis (MG) is controversial. Some authors claim a direct correlation with disease activity and treatment, in particular plasmapheresis therapy, whereas others have commented on the poor overall correlation of antibody levels with clinical state. Antibody levels were examined in a population of MG patients and correlated with disease activity and response to treatment. Antibodies to skeletal muscle AchR were found in most patients with generalised MG (24/25) and in about half of the patients with purely ocular MG (6/10) and in neither of 2 patients with congenital MG. There was scant correlation with disease activity or response to treatment. It is concluded that the assay is more useful for diagnosis than for management of MG.
Resumo:
Near work may play an important role in the development of myopia in the younger population. The prevalence of myopia has also been found to be higher in occupations that involve substantial near work tasks, for example in microscopists and textile workers. When nearwork is performed, it typically involves accommodation, convergence and downward gaze. A number of previous studies have examined the effects of accommodation and convergence on changes in the optics and biometrics of the eye in primary gaze. However, little is known about the influence of accommodation on the eye in downward gaze. This thesis is primarily concerned with investigating the changes in the eye during near work in downward gaze under natural viewing conditions. To measure wavefront aberrations in downward gaze under natural viewing conditions, we modified a commercial Shack-Hartmann wavefront sensor by adding a relay lens system to allow on-axis ocular aberration measurements in primary gaze and downward gaze, with binocular fixation. Measurements with the modified wavefront sensor in primary and downward gaze were validated against a conventional aberrometer using both a model eye and in 9 human subjects. We then conducted an experiment to investigate changes in ocular aberrations associated with accommodation in downward gaze over 10 mins in groups of both myopes (n = 14) and emmetropes (n =12) using the modified Shack-Hartmann wavefront sensor. During the distance accommodation task, small but significant changes in refractive power (myopic shift) and higher order aberrations were observed in downward gaze compared to primary gaze. Accommodation caused greater changes in higher order aberrations (in particular coma and spherical aberration) in downward gaze than primary gaze, and there was evidence that the changes in certain aberrations with accommodation over time were different in downward gaze compared to primary gaze. There were no obvious systematic differences in higher order aberrations between refractive error groups during accommodation or downward gaze for fixed pupils. However, myopes exhibited a significantly greater change in higher order aberrations (in particular spherical aberration) than emmetropes for natural pupils after 10 mins of a near task (5 D accommodation) in downward gaze. These findings indicated that ocular aberrations change from primary to downward gaze, particularly with accommodation. To understand the mechanism underlying these changes in greater detail, we then extended this work to examine the characteristics of the corneal optics, internal optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 mins. Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure corneal topography and ocular biometrics in downward gaze, a rotating Scheimpflug camera and an optical biometer were inclined on a custom built, height and tilt adjustable table. We found that both corneal optics and internal optics change with downward gaze, resulting in a myopic shift (~0.10 D) in the spherical power of the eye. The changes in corneal optics appear to be due to eyelid pressure on the anterior surface of the cornea, whereas the changes in the internal optics (an increase in axial length and a decrease in anterior chamber depth) may be associated with movement of the crystalline lens, under the action of gravity, and the influence of altered biomechanical forces from the extraocular muscles on the globe with downward gaze. Changes in axial length with accommodation were significantly greater in downward gaze than primary gaze (p < 0.05), indicating an increased effect of the mechanical forces from the ciliary muscle and extraocular muscles. A subsequent study was conducted to investigate the changes in anterior biometrics, axial length and choroidal thickness in nine cardinal gaze directions under the actions of the extraocular muscles. Ocular biometry measurements were obtained from 30 young adults (10 emmetropes, 10 low myopes and 10 moderate myopes) through a rotating prism with 15° deviation, along the foveal axis, using a non-contact optical biometer in each of nine different cardinal directions of gaze, over 5 mins. There was a significant influence of gaze angle and time on axial length (both p < 0.001), with the greatest axial elongation (+18 ± 8 μm) occurring with infero-nasal gaze (p < 0.001) and a slight decrease in axial length in superior gaze (−12 ± 17 μm) compared with primary gaze (p < 0.001). There was a significant correlation between refractive error (spherical equivalent refraction) and the mean change in axial length in the infero-nasal gaze direction (Pearson's R2 = 0.71, p < 0.001). To further investigate the relative effect of gravity and extraocular muscle force on the axial length, we measured axial length in 15° and 25° downward gaze with the biometer inclined on a tilting table that allowed gaze shifts to occur with either full head turn but no eye turn (reflects the effect of gravity), or full eye turn with no head turn (reflects the effect of extraocular muscle forces). We observed a significant axial elongation in 15° and 25° downward gaze in the full eye turn condition. However, axial length did not change significantly in downward gaze over 5 mins (p > 0.05) in the full head turn condition. The elongation of the axial length in downward gaze appears to be due to the influence of the extraocular muscles, since the effect was not present when head turn was used instead of eye turn. The findings of these experiments collectively show the dynamic characteristics of the optics and biometrics of the eye in downward gaze during a near task, over time. These were small but significant differences between myopic and emmetropic eyes in both the optical and biomechanical changes associated with shifts of gaze direction. These differences between myopes and emmetropes could arise as a consequence of excessive eye growth associated with myopia. However the potentially additive effects of repeated or long lasting near work activities employing infero-nasal gaze could also act to promote elongation of the eye due to optical and/or biomechanical stimuli.
Resumo:
Myopia (short-sightedness) is a common ocular disorder of children and young adults. Studies primarily using animal models have shown that the retina controls eye growth and the outer retina is likely to have a key role. One theory is that the proportion of L (long-wavelength-sensitive) and M (medium-wavelength-sensitive) cones is related to myopia development; with a high L/M cone ratio predisposing individuals to myopia. However, not all dichromats (persons with red-green colour vision deficiency) with extreme L/M cone ratios have high refractive errors. We predict that the L/M cone ratio will vary in individuals with normal trichromatic colour vision but not show a systematic difference simply due to refractive error. The aim of this study was to determine if L/M cone ratios in the central 30° are different between myopic and emmetropic young, colour normal adults. Information about L/M cone ratios was determined using the multifocal visual evoked potential (mfVEP). The mfVEP can be used to measure the response of visual cortex to different visual stimuli. The visual stimuli were generated and measurements performed using the Visual Evoked Response Imaging System (VERIS 5.1). The mfVEP was measured when the L and M cone systems were separately stimulated using the method of silent substitution. The method of silent substitution alters the output of three primary lights, each with physically different spectral distributions to control the excitation of one or more photoreceptor classes without changing the excitation of the unmodulated photoreceptor classes. The stimulus was a dartboard array subtending 30° horizontally and 30° vertically on a calibrated LCD screen. The m-sequence of the stimulus was 215-1. The N1-P1 amplitude ratio of the mfVEP was used to estimate the L/M cone ratio. Data were collected for 30 young adults (22 to 33 years of age), consisting of 10 emmetropes (+0.3±0.4 D) and 20 myopes (–3.4±1.7 D). The stimulus and analysis techniques were confirmed using responses of two dichromats. For the entire participant group, the estimated central L/M cone ratios ranged from 0.56 to 1.80 in the central 3°-13° diameter ring and from 0.94 to 1.91 in the more peripheral 13°-30° diameter ring. Within 3°-13°, the mean L/M cone ratio of the emmetropic group was 1.20±0.33 and the mean was similar, 1.20±0.26, for the myopic group. For the 13°-30° ring, the mean L/M cone ratio of the emmetropic group was 1.48±0.27 and it was slightly lower in the myopic group, 1.30±0.27. Independent-samples t-test indicated no significant difference between the L/M cone ratios of the emmetropic and myopic group for either the central 3°-13° ring (p=0.986) or the more peripheral 13°-30° ring (p=0.108). The similar distributions of estimated L/M cone ratios in the sample of emmetropes and myopes indicates that there is likely to be no association between the L/M cone ratio and refractive error in humans.
Resumo:
Purpose To examine choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. Methods ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged between 4-12 years, with spherical equivalent refractive errors between +1.25 and -0.50 DS. A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorio-scleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers manually segmented the OCT images to determine ChT at foveal centre, and averaged across a series of perifoveal zones over the central 5 mm. Results The average subfoveal ChT was 330 ± 65 µm (range 189-538 µm), and was significantly influenced by age (p=0.04). The ChT of the 4 to 6 year old age group (312 ± 62 µm) was significantly thinner compared to the 7 to 9 year olds (337 ± 65 µm, p<0.05) and bordered on significance compared to the 10 to 12 year olds (341 ± 61 µm, p=0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length and anterior chamber depth were significantly associated with subfoveal ChT (p<0.001). Conclusions ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
Purpose Contrast adaptation has been speculated to be an error signal for emmetropization. Myopic children exhibit higher contrast adaptation than emmetropic children. This study aimed to determine whether contrast adaptation varies with the type of text viewed by emmetropic and myopic young adults. Methods Baseline contrast sensitivity was determined in 25 emmetropic and 25 spectacle-corrected myopic young adults for 0.5, 1.2, 2.7, 4.4, and 6.2 cycles per degree (cpd) horizontal sine wave gratings. The adults spent periods looking at a 6.2 cpd high-contrast horizontal grating and reading lines of English and Chinese text (these texts comprised 1.2 cpd row and 6 cpd stroke frequencies). The effects of these near tasks on contrast sensitivity were determined, with decreases in sensitivity indicating contrast adaptation. Results Contrast adaptation was affected by the near task (F2,672 = 43.0; P < 0.001). Adaptation was greater for the grating task (0.13 ± 0.17 log unit, averaged across all frequencies) than reading tasks, but there was no significant difference between the two reading tasks (English 0.05 ± 0.13 log unit versus Chinese 0.04 ± 0.13 log unit). The myopic group showed significantly greater adaptation (by 0.04, 0.04, and 0.05 log units for English, Chinese, and grating tasks, respectively) than the emmetropic group (F1,48 = 5.0; P = 0.03). Conclusions In young adults, reading Chinese text induced similar contrast adaptation as reading English text. Myopes exhibited greater contrast adaptation than emmetropes. Contrast adaptation, independent of text type, might be associated with myopia development.
Resumo:
Purpose: Inaccurate accommodation during nearwork and subsequent accommodative hysteresis may influence myopia development. Myopia is highly prevalent in Singapore; an untested theory is that Chinese children are prone to these accommodation characteristics. We measured the accuracy of accommodation responses during and nearwork-induced transient myopia (NITM) after periods spent reading Chinese and English texts. Methods: Refractions of 40 emmetropic and 43 myopic children were measured with a free-space autorefractor for four reading tasks of 10-minute durations: Chinese (SimSun, 10.5 points) and English (Times New Roman, 12 points) texts at 25 cm and 33 cm. Accuracy was obtained by subtracting accommodation response from accommodation demand. Nearwork-induced transient myopia was obtained by subtracting pretask distance refraction from posttask refraction, and regression was determined as the time for the posttask refraction to return to pretask levels. Results: There were significant, but small, effects of text type (Chinese, 0.97 ± 0.32 diopters [D] vs. English, 1.00 ± 0.37 D; F1,1230 = 7.24, p = 0.007) and reading distance (33 cm, 1.01 ± 0.30 D vs. 25 cm, 0.97 ± 0.39 D; F1,1230 = 7.74, p = 0.005) on accommodation accuracy across all participants. Accuracy was similar for emmetropic and myopic children across all reading tasks. Neither text type nor reading distance had significant effects on NITM or its regression. Myopes had greater NITM (by 0.07 D) (F1,81 = 5.05, p = 0.03) that took longer (by 50s) (F1,81 = 31.08, p < 0.01) to dissipate. Conclusions: Reading Chinese text caused smaller accommodative lags than reading English text, but the small differences were not clinically significant. Myopic children had significantly greater NITM and longer regression than emmetropic children for both texts. Whether differences in NITM are a cause or consequence of myopia cannot be answered from this study.
Resumo:
Purpose: GABA antagonists inhibit experimental myopia in chick and GABA receptors have been localized to chick sclera and the retinal pigment epithelium (RPE). The RPE and the choroid alter scleral DNA and glycosaminoglycan (GAG) content in vitro; opposite effects have been observed for tissues from myopic and hyperopic eyes. The aim was to determine the effect of GABAergic agents on the DNA and GAG content of chick scleral fibroblasts directly and in co-culture with ocular tissues from myopic and hyperopic chick eyes. Materials and Methods: Primary cultures of fibroblastic cells expressing vimentin and α-smooth muscle actin were established. GABAergic agents were added separately (i) to the culture medium of the scleral cells and (ii) to the culture medium of the scleral cells with the addition of posterior eye cup tissue (retina, RPE, retina + RPE, choroid + RPE) to cell culture inserts. Ocular tissues were obtained from chick eyes wearing + 15D (lens-induced hyperopia, LIH) or −15D lenses (lens-induced myopia, LIM) for three days (post-hatch day 5–8) (n = 12). GAG and DNA content of scleral fibroblasts were measured. Results: GABA agents had a small direct effect on scleral cell GAG and DNA content but a larger effect was measured when GABA agents were added to the culture medium with myopic and hyperopic RPE and choroid + RPE tissues. GABA agonists increased (p = 0.002) whereas antagonists decreased (p = 0.0004) DNA content of scleral cells; effects were opposite for scleral GAG content. GABA agents significantly altered the effect of both LIM and LIH tissues (p = 0.0005) compared to control; the effects were greater for LIM tissue versus LIH tissue co-culture (p = 0.0004). Conclusion: GABAergic agents affect the DNA and GAG content of scleral fibroblasts both directly and when co-cultured with ocular tissues. GABA antagonists that prevent myopia development in chick model could act via a scleral mechanism utilizing the RPE/choroid.
Resumo:
Purpose: The retinal pigment epithelium (RPE) is a multifunctional, monolayer of cells located between the neural retina and the choroicapillaris. γ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and GABA receptors are known to be present in chick retina, sclera and cornea. There is a report of genes involved in GABA receptor signaling being expressed in human RPE, however, whether GABA receptors are present in chick RPE is unknown. Methods: Real time PCR and western blot were used to determine the expression of GABA receptors (alpha1 GABAA, GABABR2, and rho1 GABAC receptors) in isolated chicken RPE. Immunofluorescence using antibodies against one of the GABA receptor sub-types was used to determine receptor localization. Results: Both real-time PCR and western blot demonstrated that alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in isolated chick RPE. Immunofluorescence further demonstrated that GABA receptors were localized to the cell membrane and plasma of RPE cells. Conclusions: Alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in chick RPE. The purpose of the GABA receptors within the RPE remains to be explored.
Resumo:
Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.
Resumo:
Purpose The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Methods Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (±30°) and, for a subset of eight participants along the vertical visual field (±25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ±30° along horizontal and vertical visual fields. Results Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Conclusion Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ±30° and ±25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths.
Resumo:
Purpose Many contact lens (CL) manufacturers produce simultaneous-image lenses in which power varies either smoothly or discontinuously with zonal radius. We present in vitro measurements of some recent CLs and discuss how power profiles might be approximated in terms of nominal distance corrections, near additions, and on-eye visual performance. Methods Fully hydrated soft, simultaneous-image CLs from four manufacturers (Air Optix AQUA, Alcon; PureVision multifocal, Bausch & Lomb; Acuvue OASYS for Presbyopia, Vistakon; Biofinity multifocal- ‘‘D’’ design, Cooper Vision) were measured with a Phase focus Lens Profiler (Phase Focus Ltd., Sheffield,UK) in a wet cell and powerswere corrected to powers in air. All lenses had zero labeled power for distance. Results Sagittal power profiles revealed that the ‘‘low’’ add PureVision and Air Optix lenses exhibit smooth (parabolic) profiles, corresponding to negative spherical aberration. The ‘‘mid’’ and ‘‘high’’ add PureVision and Air Optix lenses have biaspheric designs, leading to different rates of power change for the central and peripheral portions. All OASYS lenses display a series of concentric zones, separated by abrupt discontinuities; individual profiles can be constrained between two parabolically decreasing curves, each giving a valid description of the power changes over alternate annular zones. Biofinity lenses have constant power over the central circular region of radius 1.5 mm, followed by an annular zone where the power increases approximately linearly, the gradient increasing with the add power, and finally an outer zone showing a slow, linear increase in power with a gradient being almost independent of the add power. Conclusions The variation in power across the simultaneous-image lenses produces enhanced depth of focus. The throughfocusnature of the image, which influences the ‘‘best focus’’ (distance correction) and the reading addition, will vary with several factors, including lens centration, the wearer’s pupil diameter, and ocular aberrations, particularly spherical aberration; visual performance with some designs may show greater sensitivity to these factors.