999 resultados para multilayer membrane
Resumo:
Truly chlorine-resistant polyamide reverse osmosis composite membranes were prepared by cross-linking the interface of the composite membrane. Such membranes possessed chlorine resistance one order of magnitude more than those of the commercially used polyamide composite membranes. The effect of the degree of cross-linking on chlorine resistance was also described. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The soft x-ray reflectivity of multilayer films is affected by the surface roughness on the transverse nanometer scale. Scanning tunneling microscopy (STM) is an ideal instrument for providing high-lateral-resolution roughness measurements for soft x-ray multilayer films that cannot be obtained with other types of instruments on the transverse nanometer scale. The surface roughnesses of Mo/Si, Mo/C, and W/Si soft x-ray multilayer films prepared by an ion-beam-sputtering technique were measured with a STM on the vertical and transverse attributes. The film roughnesses and average spatial wavelengths added to the substrates depend on the multilayer film fabrication conditions, i.e., material combinations, number of layers, and individual layer thickness. These were estimated to lead to a loss of specular reflectivity and variations of the soft x-ray scattering angle distribution. This method points the way to further studies of soft x-ray multilayer film functional properties and can be used as basic guidance for selecting the best coating conditions in the fabrications of soft x-ray multilayer films. (C) 1996 American Vacuum Society.
Resumo:
New polybutadiene-based surfactants (LYF) were synthesized by sulfonation of liquid polybutadiene with acetal sulfate at an elevated temperature, and their properties in a liquid surfactant membrane (LSM) separation process were examined by comparison with the two polyisobutylene-based surfactants ECA4360 and EM301. It was found that LYF surfactants had satisfactory overall properties as regards stability, swelling, and demulsification Of the W/O emulsion in the cases of both acidic and caustic internal aqueous phases.
Resumo:
The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
The swelling processes of an annealed poly (vinyl alcohol) membrane, a NaOH-crosslinked poly (vinyl alcohol) membrane, a poly (vinyl alcohol)-N,N'-methylene bisacrylamide irradiation-crosslinked membrane and a poly (vinyl alcohol)/poly(AMcoAANa) blend membrane were investigated. Water was preferentially sorbed by all four membranes. The selective sorption factor alpha(s) and the selective diffusion factor alpha(d) were defined, and were used to characterize the effects of sorption and diffusion on selectivity. The results have shown that preferential sorption has a marked effect on selectivity. The mean diffusion coefficients and pervaporation properties of the four membranes are also discussed.
Resumo:
The porosity and the hydrophobicity of membranes are two essential requirements for membrane distillation (MD) of aqueous solutions. So far, the hydrophobic porous membranes used in MD studies have been prepared from hydrophobic materials. In this work, hydrophilic cellulose acetate and cellulose nitrate membranes were modified into hydrophobic membranes by radiation grafting polymerization and plasma polymerization, and used in MD studies successfully. The results indicated that modified membranes with good performance in MD can be obtained if the modifying conditions are controlled appropriately. Especially plasma polymerization, in which many particular kinds of monomer could be polymerized onto the surface of porous materials, has become an efficient method to prepare hydrophobic porous membrane with high performance from hydrophilic membranes. It will stimulate the development and practical application of MD.
Resumo:
In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.
Resumo:
The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.
Resumo:
Membrane distillation is a new membrane separation process which has been developed in the last few years. When a piece of microporous hydrophobic membrane separates two kinds of aqueous solutions different in temperature, the solutions cannot transport through the pores of membrane in any directions because of the hydrophobicity of membrane. However, vapor can readily penetrate through the
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.