936 resultados para microtubule associated protein 4
Resumo:
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Resumo:
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Resumo:
The inhibitory effects of VSV infection on MuLV production were investigated using the VSV temperature-sensitive mutants t1B17(I & V), tsT1026(I), tsG22(II), and ts052(II). At the permissive temperature, all four mutants suppressed the release of virion-associated MuLV gRNA by approximately 98% within 0.5 to 2.5 hr post infection. At the restrictive temperature and in the absence of cell killing, infection with t1B17(I & V) inhibited the release of MuLV gRNA, while tsT1026(I) and tsG22(II) did not. In contrast, ts052(II) inhibited the release of MuLV gRNA and induced cell killing. During the same time period and at either temperature, all four mutants did not suppress either MuLV-associated protein release or intracellular MuLV sRNA synthesis. These results indicate that VSV inhibits MULV gRNA release at a level somewhere between the synthesis and release of newly synthesized gRNA.^
Resumo:
Phosphatidylserine synthase catalyzes the committed step in the synthesis of the major lipid of Escherichia coli, phosphatidylethanolamine, and may be involved in regulating the balance of the zwitterionic and anionic phospholipids in the membrane. Unlike the other enzymes involved in the biosynthesis of phospholipids in E. coli, phosphatidylserine synthase is not membrane associated but seems to have a high affinity for the ribosomal fraction of cells broken by various methods. Investigations on the enzyme in cell free extracts using glycerol gradient centrifugation revealed that the binding of the synthase to ribosomes may be prevented by the presence of highly basic compounds such as spermidine and by the presence of detergent-lipid substrate micelles under assay conditions. Thus phosphatidylserine synthase may not be ribosome associated under physiological conditions but associated with its membrane bound substrate (Louie and Dowhan (1980) J. Biol. Chem. 255, 1124).^ In addition homogeneous enzyme shows many of the properties of a membrane associated protein. It binds nonionic detergent such as Triton X-100, which is also required during purification of the enzyme. Optimal catalytic activity is also dependent on micelle or surface bound substrate. Phosphatidylserine synthase has been synthesized in vitro using a coupled transcription-translation system dependent on the presence of the cloned structural gene. The translation product was found to preferentially associate with the ribosomal fraction even in the presence of added E. coli membranes. Preferential membrane binding could be induced if the membranes were supplemented with the lipid substrate CDP-diacylglycerol. Similar effects were obtained with the acidic lipids phosphatidylglycerol and cardiolipin. On the other hand the zwitterionic lipid phosphatidylethanolamine and the lipid product phosphatidylserine did not cause any detectable membrane association. These results are consistent with the enzyme recognizing membrane bound substrate (Carman and Dowhan (1979) J. Biol. Chem. 254, 8391) and with the lipid charge influencing membrane interaction.^ Phosphatidylserine synthase is at a branch point in lipid metabolism, which may determine the distribution of the zwitterionic and anionic phospholipids in the membrane. The results obtained here indicate phosphatidylserine synthase may play a significant role in membrane lipid biosynthesis by maintaining charge balance of the E. coli membrane. In determining the localization of phosphatidylserine synthase in vitro one may have a better understanding of its function and control in vivo and may also have a better understanding of its role in membrane assembly.^
Resumo:
Rexinoids are synthetic agonists for the retinoid X receptors (RXRs), a member of the nuclear receptor family of ligand-activated transcription factors. Rexinoids have been shown to lower serum glucose and insulin levels in animal models of type 2 diabetes. However the mechanisms that are responsible for the insulin-sensitizing action of rexinoids are largely unknown. Skeletal muscle accounts for the majority of insulin-regulated whole-body glucose disposal and impaired insulin action in muscle is an important contributor to the pathophysiology of type 2 diabetes. Glucose transport is a rate-limiting step in glucose utilization. The goal of these studies is to examine the mechanisms of the anti-diabetic activity of rexinoids in skeletal muscle of diabetic db/db mice. The results we have obtained showed that treatment of db/db mice with rexinoids for two weeks resulted in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Insulin stimulates glucose transport in muscle via the regulation of both the insulin receptor substrate-1 (IRS-1)/Akt pathway and the Cbl-associated protein (CAP)/Cbl pathway. Rexinoids increased the insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation without effects on the activity of the CAP/Cbl pathway. The effects of rexinoids on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Serine 307 phosphorylation as well as qualitative and quantitative alterations in the fatty acyl-CoAs present within the muscle cells. In addition, rexinoids increased the expression of uncoupling protein 3 (UCP3) and activation of AMPK in diabetic muscle. This effect may also enhance the IRS-1/Akt signaling. We believe that it is the concerted activation of the IRS-1/Akt and AMPK signaling systems, a pharmacological mechanism that as far as we know, is unique to rexinoids, that results in the anti-diabetic effects of these drugs. Our results also suggest that the glucose-lowering mechanism of rexinoids is distinct from that of the thiazolidinediones (TZDs), peroxisome proliferator-activated receptor γ (PPARγ) agonists with well-characterized anti-diabetic activity. Rexinoids appear to represent a novel class of insulin sensitizers, with potential applications for the treatment of type 2 diabetes. ^
Resumo:
Functional gastrointestinal disorders (FGIDs) are defined as ailments of the mid or lower gastrointestinal tract which are not attributable to any discernable anatomic or biochemical defects.1 FGIDs include functional bowel disorders, also known as persisting abdominal symptoms (PAS). Irritable bowel syndrome (IBS) is one of the most common illnesses classified under PAS.2,3 This is the first prospective study that looks at the etiology and pathogenesis of post-infectious PAS in the context of environmental exposure and genetic susceptibility in a cohort of US travelers to Mexico. Our objective was to identify infectious, genetic and environmental factors that predispose to post infectious PAS. ^ Methods. This is a secondary data analysis of a prospective study on a cohort of 704 healthy North American tourists to Cuernavaca, Morelos and Guadalajara, Jalisco in Mexico. The subjects at risk for Travelers' diarrhea were assessed for chronic abdominal symptoms on enrollment and six months after the return to the US. ^ Outcomes. PAS was defined as disturbances of mid and lower gastrointestinal system without any known pathological or radiological abnormalities, or infectious, or metabolic causes. It refers to functional bowel disease, category C of functional gastrointestinal diseases as defined by the Rome II criterion. PAS was sub classified into Irritable bowel syndrome (IBS) and functional abdominal disease (FAD). ^ IBS is defined as recurrent abdominal pain or discomfort present at least 25% and associated with improvement with defecation, change in frequency and form of stool. FAD encompasses other abdominal symptoms of chronic nature that do not meet the criteria for IBS. It includes functional diarrhea, functional constipation, functional bloating: and unspecified bowel symptoms. ^ Results. Among the 704 travelers studied, there were 202 cases of PAS. The PAS cases included 175 cases of FAD and 27 cases of IBS. PAS was more frequent among subjects who developed traveler's diarrhea in Mexico compared to travelers who remained healthy during the short term visit to Mexico (52 vs. 38; OR = 1.8; CI, 1.3–2.5, P < 0.001). A statistically significant difference was noted in the mean age of subjects with PAS compared to healthy controls (28 vs. 34 yrs; OR = 0.97, CI, 0.95–0.98; P < 0.001). Travelers who experienced multiple episodes, a later onset of diarrhea in Mexico and passed greater numbers of unformed stools were more likely to be identified in PAS group at six months. Participants who developed TD caused by enterotoxigenic E.coli in Mexico showed a 2.6 times higher risk of developing FAD (P = 0.003). Infection with Providencia ssp. also demonstrated a greater risk to developing PAS. Subjects who sought treatment for diarrhea while in Mexico also displayed a significantly lower frequency of IBS at six months follow up (OR = 0.30; CI, 0.10–0.80; P = 0.02). ^ Forty six SNPs belonging to 14 genes were studied. Seven SNPs were associated with PAS at 6 months. These included four SNPs from the Caspase Recruitment Domain-Containing Protein 15 gene (CARD15), two SNPs from Surfactant Pulmonary-Associated Protein D gene (SFTPD) and one from Decay-Accelerating Factor For Complement gene (CD55). A genetic risk score (GRS) was composed based on the 7 SNPs that showed significant association with PAS. A 20% greater risk for PAS was noted for every unit increase in GRS. The risk increased by 30% for IBS. The mean GRS was high for IBS (2.2) and PAS (1.1) compared to healthy controls (0.51). These data suggests a role for these genetic polymorphisms in defining the susceptibility to PAS. ^ Conclusions. The study allows us to identify individuals at risk for developing post infectious IBS (PI-IBS) and persisting abdominal symptoms after an episode of TD. The observations in this study will be of use in developing measures to prevent and treat post-infectious irritable bowel syndrome among travelers including pre-travel counseling, the use of vaccines, antibiotic prophylaxis or the initiation of early antimicrobial therapy. This study also provides insights into the pathogenesis of post infectious PAS and IBS. (Abstract shortened by UMI.)^
Resumo:
The phenylpropanoid pathway provides precursors for the biosynthesis of soluble secondary metabolites and lignin in plants. Ferulate-5-hydroxylase (F5H) catalyzes an irreversible hydroxylation step in this pathway that diverts ferulic acid away from guaiacyl lignin biosynthesis and toward sinapic acid and syringyl lignin. This fact led us to postulate that F5H was a potential regulatory step in the determination of lignin monomer composition. To test this hypothesis, we have used Arabidopsis to examine the impact of F5H overexpression. Arabidopsis is a useful model system in which to study lignification because in wild-type plants, guaiacyl and syringyl lignins are deposited in a tissue-specific fashion, while the F5H-deficient fah1 mutant accumulates only guaiacyl lignin. Here we show that ectopic overexpression of F5H in Arabidopsis abolishes tissue-specific lignin monomer accumulation. Surprisingly, overexpression of F5H under the control of the lignification-associated cinnamate-4-hydroxylase promoter, but not the commonly employed cauliflower mosaic virus 35S promoter, generates a lignin that is almost entirely comprised of syringylpropane units. These experiments demonstrate that modification of F5H expression may enable engineering of lignin monomer composition in agronomically important plant species.
Resumo:
Defects in lymphocyte apoptosis may lead to autoimmune disorders and contribute to the pathogenesis of type 1 diabetes. Lymphocytes of nonobese diabetic (NOD) mice, an animal model of autoimmune diabetes, have been found resistant to various apoptosis signals, including the alkylating drug cyclophosphamide. Using an F2 intercross between the apoptosis-resistant NOD mouse and the apoptosis-susceptible C57BL/6 mouse, we define a major locus controlling the apoptosis-resistance phenotype and demonstrate its linkage (logarithm of odds score = 3.9) to a group of medial markers on chromosome 1. The newly defined gene cannot be dissociated from Ctla4 and Cd28 and in fact marks a 20-centimorgan region encompassing Idd5, a previously postulated diabetes susceptibility locus. Interestingly, we find that the CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and the CD28 costimulatory molecules are defectively expressed in NOD mice, suggesting that one or both of these molecules may be involved in the control of apoptosis resistance and, in turn, in diabetes susceptibility.
Resumo:
Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.
Resumo:
Perforant path long-term potentiation (LTP) in intact mouse hippocampal dentate gyrus increased the neuron-specific, growth-associated protein GAP-43 mRNA in hilar cells 3 days after tetanus, but surprisingly not in granule cells, the perforant path target. This increase was positively correlated with level of enhancement and restricted to central hilar cells on the side of stimulation. Blockade of LTP by puffing dl-aminophosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor blocker into the molecular layer, eliminated LTP-induced GAP-43 mRNA elevation in hilar cells. To determine whether the mRNA elevation was mediated by transcription, LTP was studied in transgenic mice bearing a GAP-43 promoter-lacZ reporter gene. Promoter activity as indexed by Transgene expression (PATE) increased as indicated by blue staining of the lacZ gene product, β-galactosidase. Potentiation induced a blue band bilaterally in the inner molecular layer of the dentate gyrus along the entire septotemporal axis. Because mossy cells are the only neurons in the central hilar zone that project to the inner molecular layer bilaterally along the entire septotemporal axis and LTP-induced activation of PATE in this zone was confined to the side of stimulation, we concluded that mossy cells were unilaterally activated, increasing synthesis of β-galactosidase, which was transported bilaterally. Neither granule cells nor pyramidal cells demonstrated increased PATE or increased GAP-43 mRNA levels. These results and recent evidence indicating the necessity of hilar neurons for LTP point to previously unheralded mossy cells as potentially critical for perforant path LTP and the GAP-43 in these cells as important for LTP persistence lasting days.
Resumo:
c-Cbl-associated protein (CAP) is a signaling protein that interacts with both c-Cbl and the insulin receptor that may be involved in the specific insulin-stimulated tyrosine phosphorylation of c-Cbl. The restricted expression of CAP in cells metabolically sensitive to insulin suggests an important potential role in insulin action. The expression of CAP mRNA and proteins are increased in 3T3-L1 adipocytes by the insulin sensitizing thiazolidinedione drugs, which are activators of the peroxisome proliferator-activated receptor γ (PPARγ). The stimulation of CAP expression by PPARγ activators results from increased transcription. This increased expression of CAP was accompanied by a potentiation of insulin-stimulated c-Cbl tyrosine phosphorylation. Administration of the thiazolidinedione troglitazone to Zucker (fa/fa) rats markedly increased the expression of the major CAP isoform in adipose tissue. This effect was sustained for up to 12 weeks of treatment and accompanied the ability of troglitazone to prevent the onset of diabetes and its complications. Thus, CAP is the first PPARγ-sensitive gene identified that participates in insulin signaling and may play a role in thiazolidinedione-induced insulin sensitization.
Resumo:
N-type Ca2+ channels mediate Ca2+ influx, which initiates fast exocytosis of neurotransmitters at synapses, and they interact directly with the SNARE proteins syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) through a synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their α1B subunits. Introduction of peptides containing the synprint site into presynaptic neurons reversibly inhibits synaptic transmission, confirming the importance of interactions with this site in synaptic transmission. Here we report a direct interaction of the synprint peptide from N-type Ca2+ channels with synaptotagmin I, an important Ca2+ sensor for exocytosis, as measured by an affinity-chromatography binding assay and a solid-phase immunoassay. This interaction is mediated by the second C2 domain (C2B) of synaptotagmin I, but is not regulated by Ca2+. Using both immobilized recombinant proteins and native presynaptic membrane proteins, we found that the synprint peptide and synaptotagmin competitively interact with syntaxin. This interaction is Ca2+-dependent because of the Ca2+ dependence of the interactions between syntaxin and these two proteins. These results provide a molecular basis for a physical link between Ca2+ channels and synaptotagmin, and suggest that N-type Ca2+ channels may undergo a complex series of Ca2+-dependent interactions with multiple presynaptic proteins during neurotransmission.
Resumo:
Dystrobrevin, a dystrophin-related and -associated protein, has been proposed to be important in the formation and maintenance of the neuromuscular junction. Dystrobrevin coprecipitates with both the acetylcholine receptor complex as well as the dystrophin glycoprotein complex. Although the nature of dystrobrevin’s association with the dystrophin glycoprotein complex remains unclear, it is known that dystrobrevin binds directly to the syntrophins, a heterologous group of dystrophin-associated proteins. Using the yeast two-hybrid system to identify protein–protein interactions, we present evidence for the heterodimerization of dystrobrevin directly with dystrophin. The C terminus of dystrobrevin binds specifically to the C terminus of dystrophin. We further refined this site of interaction to these proteins’ homologous coiled-coil motifs that flank their respective syntrophin-binding sites. We also show that the interaction between the dystrobrevin and dystrophin coiled-coil domains is specific and is not due to a nonspecific coiled-coil domain interaction. From the accumulated evidence of protein–protein interactions presented here and elsewhere, we propose a partially revised model of the organization of the dystrophin-associated glycoprotein complex.
Resumo:
Sik, the mouse homologue of the breast tumor kinase Brk, is expressed in differentiating cells of the gastrointestinal tract and skin. We examined expression and activity of Sik in primary mouse keratinocytes and a mouse embryonic keratinocyte cell line (EMK). Calcium-induced differentiation of these cells has been shown to be accompanied by the activation of tyrosine kinases and rapid phosphorylation of a 65-kDa GTPase-activating protein (GAP)-associated protein (GAP-A.p65). We demonstrate that Sik is activated within 2 min after calcium addition in primary keratinocytes and EMK cells. In EMK cells, Sik binds GAP-A.p65, and this interaction is mediated by the Sik Src homology 2 domain. Although Sik directly complexes with GAP-A.p65, overexpression of wild-type or kinase defective Sik in EMK cells does not lead to detectable changes in GAP-A.p65 phosphorylation. These data suggest that Sik is not responsible for phosphorylation of GAP-A.p65. GAP-A.p65 may act as an adapter protein, bringing Sik into proximity of an unidentified substrate. Overexpression of Sik in EMK cells results in increased expression of filaggrin during differentiation, supporting a role for Sik in differentiation.
Resumo:
Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.