926 resultados para metallic tube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MacMARCKS is a member of the MARCKS family of protein kinase C (PKC) substrates. Biochemical evidence demonstrates that these proteins integrate calcium and PKC-dependent signals to regulate actin structure at the membrane. We report here that deletion of the MacMARCKS gene prevents cranial neural tube closure in the developing brain, resulting in anencephaly. This suggests a central role for MacMARCKS and the PKC signal transduction pathway in the folding of the anterior neural plate during the early phases of brain formation, and supports the hypothesis that actin-based motility directs cranial neural tube closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmitting tissue-specific (TTS) protein is a pollen tube growth-promoting and attracting glycoprotein located in the stylar transmitting tissue extracellular matrix of the pistil of tobacco. The TTS protein backbones have a deduced molecular mass of about 28 kDa, whereas the glycosylated stylar TTS proteins have apparent molecular masses ranging between 50 and 100 kDa. TTS mRNAs and proteins are ectopically produced in transgenic tobacco plants that express either a cauliflower mosaic virus (CaMV) 35S promoter-TTS2 transgene or a CaMV 35S-promoter-NAG1 (NAG1 = Nicotiana tabacum Agamous gene) transgene. However, the patterns of TTS mRNA and protein accumulation and the quality of the TTS proteins produced are different in these two types of transgenic plants. In 35S-TTS transgenic plants, TTS mRNAs and proteins accumulate constitutively in vegetative and floral tissues. However, the ectopically expressed TTS proteins in these transgenic plants accumulate as underglycosylated protein species with apparent molecular masses between 30 and 50 kDa. This indicates that the capacity to produce highly glycosylated TTS proteins is restricted to the stylar transmitting tissue. In 35S-NAG transgenic plants, NAG1 mRNAs accumulate constitutively in vegetative and floral tissues, and TTS mRNAs are induced in the sepals of these plants. Moreover, highly glycosylated TTS proteins in the 50- to 100-kDa molecular mass range accumulate in the sepals of these transgenic, 35S-NAG plants. These results show that the tobacco NAGI gene, together with other yet unidentified regulatory factors, control the expression of TTS genes and the cellular capacity to glycosylate TTS proteins, which are normally expressed very late in the pistil developmental pathway and function in the final stage of floral development. The sepals in the transgenic 35S-NAG plants also support efficient pollen germination and tube growth, similar to what normally occurs in the pistil, and this ability correlates with the accumulation of the highest levels of the 50- to 100-kDa glycosylated TTS proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shape of metallic constrictions of nanoscopic dimensions (necks) formed using a scanning tunneling microscope is shown to depend on the fabrication procedure. Submitting the neck to repeated plastic deformation cycles makes it possible to obtain long necks or nanowires. Point-contact spectroscopy results show that these long necks are quite crystalline, indicating that the repeated cycles of plastic deformation act as a “mechanical annealing” of the neck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate both experimentally and theoretically the evolution of conductance in metallic one-atom contacts under elastic deformation. While simple metals like Au exhibit almost constant conductance plateaus, Al and Pb show inclined plateaus with positive and negative slopes. It is shown how these behaviors can be understood in terms of the orbital structure of the atoms forming the contact. This analysis provides further insight into the issue of conductance quantization in metallic contacts revealing important aspects of their atomic and electronic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determine the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through a combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers, or double-bond contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to study the dynamic behavior of a pedestrian bridge in Alicante, Spain. It is a very slender footbridge with vertical and horizontal vibration problems during the passage of pedestrians. Accelerations have been recorded by accelerometers installed at various locations of the bridge. Two scenarios, in free vibration (after the passage of a certain number of pedestrians on the bridge) and forced vibration produced by a fixed number of pedestrians walking on the bridge at a certain speed and frequency. In each test, the effect on the comfort of the pedestrians, the natural frequencies of vibration, the mode shapes and damping factors have been estimated. It has been found that the acceleration levels are much higher than the allowable by the Spanish standards and this should be considered in the restoration of the footbridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the lowest-energy unoccupied molecular orbital of pristine picene, the third one remains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter-filled two-orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of the Lanczos method show low-energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For suitable illumination and observation conditions, sparkles may be observed in metallic coatings. The visibility of these sparkles depends critically on their intensity, and on the paint medium surrounding the metallic flakes. Based on previous perception studies from other disciplines, we derive equations for the threshold for sparkles to be visible. The resulting equations show how the visibility of sparkles varies with the luminosity and distance of the light source, the diameter of the metallic flakes, and the reflection properties of the paint medium. The predictions are confirmed by common observations on metallic sparkle. For example, under appropriate conditions even metallic flakes as small as 1 μm diameter may be visible as sparkle, whereas under intense spot light the finer grades of metallic coatings do not show sparkle. We show that in direct sunlight, dark coarse metallic coatings show sparkles that are brighter than the brightest stars and planets in the night sky. Finally, we give equations to predict the number of visually distinguishable flake intensities, depending on local conditions. These equations are confirmed by previous results. Several practical examples for applying the equations derived in this article are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as “jump to contact” (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes the traffic generated on YouTube around television series. We selected a sample of 314 short YouTube videos about 21 Spanish TV series that premiered in 2013 by Spain’s three most popular mainstream television networks (Telecinco, Antena 3, and La1). These videos, which together received more than 24 million views, were classified according to two key variables: the nature (official or nonofficial) of the YouTube channel on which they were located and the exclusivity of their content (already broadcast on TV or Web exclusive). The analysis allows us to characterize the strategies used by TV networks on YouTube and the activity of fans as well as their efforts in the construction of a transmedia narrative universe around TV series.