916 resultados para marine conservation
Resumo:
Minimising catches of non-target animals in a trawl fishery reduces the impact on a marine community and may help to sustain the fishery resource in the long term. Hence the desirability for trawls that minimise impacts on non-target species while maintaining catches of target species. This study resulted from a need to further develop easily handled, semi-pelagic style trawls for Australia's Northern Fish Trawl Fishery. In November 1993 we compared catches from three differently rigged versions of a demersal wing trawl: one fished in a standard demersal configuration with its footrope on the sea bed, and two fished semi-pelagically, with their footropes raised to either 0.4-0.5 or 0.8-0.9 m above the sea bed. At two sites in the northeast Gulf of Carpentaria, each trawl type was used on the same combination of sites, grids within sites and times of day. Catches of the main target species (Lutjanus malabaricus and Lutjanus erythropterus) by the three trawl types were not significantly different. However, the mean catches of both these species and of other commercially important snappers, were highest in the semi-pelagic trawl raised 0.4-0.5 m above the sea bed. This increase could be due to a larger trawl spread or to the whole rig fishing higher in the water column. Of the 107 species of fishes analysed, 61 were caught in greater abundance in the demersal trawl. Seven species were caught more effectively in the semi-pelagic trawl with the footrope 0.4-0.5 m above the substrate; none was caught most effectively with the footrope set at 0.8-0.9 m. Epibenthic byproduct species (squid and Thenus orientalis), fish bycatch, sponges and other epibenthic invertebrates were also caught in lower numbers in the semi-pelagic trawls. The semi-pelagic trawls convincingly caught less (in both numbers and biomass) of the unwanted species which are normally discarded. Semi-pelagic fish trawls of the types tested would be suitable for Australia's Northern Fish Trawl Fishery and probably other demersal trawl fisheries that would benefit from the conservation of non-target epibenthic communities.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 -30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
This article presents some remarks on models currently used in low speed manoeuvring and dynamic positioning problems. It discusses the relationship between the classical hydrodynamic equations for manoeuvring and seakeeping, and offers insight into the models used for simulation and control system design.
Resumo:
The tropical marine sponge Acanthella cavernosa (Dendy) converts potassium [14C] cyanide to axisonitrile-3 (1); this precursor is also used for the synthesis of axisothiocyanate-3 (2) suggesting that isocyanides are precursors to isothiocyanates in A. cavernosa. Likewise, potassium [14C] thiocyanate is used for the synthesis of axisothiocyanate-3; unexpectedly this precursor also labelled axisonitrile-3. These results demonstrate either an interconversion between cyanide and thiocyanate prior to secondary metabolite formation or that the secondary metabolites can themselves be interconverted. Specimens of the dorid nudibranch Phyllidiellu pustulosa, preadapted to a diet of A. cavernosa, fed on 14C-labelled sponges and were subsequently found to contain the radioactive terpenes (1) and (2). Specimens of P. pustulosa, which had not expressed a dietary preference for A. cavernosa in the field, did not generally feed in aquarium tests with 14C-labelled sponges and, therefore, provided non-radioactive extracts. Since control experiments demonstrated the inability of P. pustulosa to synthesise the metabolites de novo, we therefore conclude that P. pustulosa acquires secondary metabolites by dietary transfer from A. cavernosa.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
Wildlife populations are affected by a series of emerging diseases, some of which pose a significant threat to their conservation. They can also be reservoirs of pathogens that threaten domestic animal and human health. In this paper, we review the ecology of two viruses that have caused significant disease in domestic animals and humans and are carried by wild fruit bats in Asia and Australia. The first, Hendra virus, has caused disease in horses and/or humans in Australia every five years since it first emerged in 1994. Nipah virus has caused a major outbreak of disease in pigs and humans in Malaysia in the late 1990s and has also caused human mortalities in Bangladesh annually since 2001. Increased knowledge of fruit bat population dynamics and disease ecology will help improve our understanding of processes driving the emergence of diseases from bats. For this, a transdisciplinary approach is required to develop appropriate host management strategies that both maximise the conservation of bat populations as well as minimise the risk of disease outbreaks in domestic animals and humans.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
Dugong habitats were considered in the design for the new zoning network for the Great Barrier Reef Marine Park as part of the Representative Areas Program. One of the specific design guidelines developed as part of the biophysical operational principles recommended that 50% of all high priority dugong habitats should be incorporated in the network of no-take areas. The high priority dugong habitat incorporated in no-take protection increased from 1396 to 3476 km2 (or 16.9-42.0% of all identified sites). Although this increase in protection fell short of the recommended 50%, overall the level of protection afforded by the Great Barrier Reef Marine Park Zoning Plan 2003 increased for all the locations identified.
Resumo:
Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.
Resumo:
The mountain yellow-legged frog Rana muscosa sensu lato, once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae, in the northern and central Sierra Nevada, and R. muscosa, in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899-1994) localities from museum collections show that 93.3% (n=146) of R. sierrae populations and 95.2% (n=79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges.
Resumo:
To assess the International Union for Conservation of Nature (IUCN) status of Macrozamia platyrhachis F.M.Bailey, we surveyed this central Queensland cycad for its population abundance and health and its pollinator type and pollination syndrome (thermogenesis and volatile emissions). Plants are locally abundant within the 11 discrete populations surveyed, with an estimated population of 611 315 adult plants. Plants are highly restricted to a small area of occupancy, seed dispersal is nearly non-existent and extreme fires appear to have destroyed almost all seeds and seedlings and decimated the pollinators. Of known Macrozamia pollinators, only the thrips, Cycadothrips chadwicki Mound, were found on cones, and these were found in very low numbers. The pollination syndrome for this cycad appears to be unique, based on two cone traits. For one, thermogenesis peaks in early evening, a contrast with daytime peaks of other Cycadothrips-pollinated Macrozamia, but matches that of the Tranes weevil-pollinated Macrozamia machinii. In addition, cone volatiles include both previously unreported compounds as well as those reported exclusively on either Cycadothrips- or Tranes-pollinated species. Based on its small, fragmented area of occupancy, projected population declines and the unique pollination syndrome, we recommend that M. platyrhachis retain its current status as 'Endangered'. Habitat management plans should stipulate that controlled burns be avoided during cycad coning season and that wildfires be controlled to minimise damage to seedlings and pollinators.
Resumo:
Involvement in scientifically structured habitat monitoring is a relatively new concept to the peoples of Torres Strait. The approach we used was to focus on awareness, and to build the capacity of groups to participate using Seagrass-Watch as the vehicle to provide education and training in monitoring marine ecosystems. The project successfully delivered quality scientifically rigorous baseline information on the seasonality of seagrasses in the Torres Strait-a first for this region. Eight seagrass species were identified across the monitoring sites. Seagrass cover varied within and between years. Preliminary evidence indicated that drivers for seagrass variability were climate related. Generally, seagrass abundance increased during the north-west monsoon (Kuki), possibly a consequence of elevated nutrients, lower tidal exposure times, less wind, and higher air temperatures. Low seagrass abundance coincided with the presence of greater winds and longer periods of exposure at low tides during the south-east trade wind season (Sager). No seasonal patterns were apparent when frequency of disturbance from high sedimentation and human impacts was high. Seagrass-Watch has been incorporated in to the Thursday Island High School's Marine Studies Unit ensuring continuity of monitoring. The students, teachers, and other interested individuals involved in Seagrass-Watch have mastered the necessary scientific procedures to monitor seagrass meadows, and developed skills in coordinating a monitoring program and skills in mentoring younger students. This has increased the participants' self-esteem and confidence, and given them an insight into how they may participate in the future management of their sea country.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.
Resumo:
Three data sets were examined to define the level of interaction of reef associated sharks with the commercial Coral Reef Fin Fish Fishery within the Great Barrier Reef (GBR). Data were examined from fishery logbooks, an observer program within the fishery and a fishery-independent survey conducted as part of the Effects of Line Fishing (ELF) Experiment. The majority of the identified catch was comprised of grey reef (62-72%), whitetip reef (16-29%) and blacktip reef (6-13%) sharks. Logbook data revealed spatially and temporally variable landings of shark from the GBR. Catch per unit effort (CPUE) through time was stable for the period from 1989 to 2006 with no evidence of increase or decline. Data from observer and ELF data sets indicated no differences in CPUE among regions. The ELF data set demonstrated that CPUE was higher in Marine National Park zones (no fishing) when compared to General Use zones (open to fishing). The ongoing and consistent catches of reef sharks in the fishery and effectiveness of no-fishing zones suggest that management zones within the GBR Marine Park are effective at protecting a portion of the reef shark population from exploitation.