903 resultados para maintaining and augmenting Plant design
Resumo:
In the last years, a rising trend of pollen allergies in urban areas has been attributed to atmospheric pollution. In this work, we investigated the effects of SO2 and NO2 on the protein content, allergenicity, and germination rate of Acer negundo pollen. A novel environmental chamber was assembled to exposure pollen samples with SO2 or NO2 at two different levels: just below and two times the atmospheric hour-limit value acceptable for human health protection in Europe. Results showed that protein content was lower in SO2- exposed pollen samples and slightly higher in NO2-exposed pollen compared to the control sample. No different polypeptide profiles were revealed by SDSPAGE between exposed and nonexposed pollen, but the immunodetection assays indicated higher IgE recognition by all sera of sensitized patients to Acer negundo pollen extracts in all exposed samples in comparison to the nonexposed samples. A decrease in the germination rate of exposed in contrast to nonexposed pollen was verified, which was more pronounced for NO2-exposed samples. Our results indicated that in urban areas, concentrations of SO2 and NO2 below the limits established for human protection can indirectly aggravate pollen allergy on predisposed individuals and affect plant reproduction.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.
Resumo:
Our day-to-day life is dependent on several embedded devices, and in the near future, many more objects will have computation and communication capabilities enabling an Internet of Things. Correspondingly, with an increase in the interaction of these devices around us, developing novel applications is set to become challenging with current software infrastructures. In this paper, we argue that a new paradigm for operating systems needs to be conceptualized to provide aconducive base for application development on Cyber-physical systems. We demonstrate its need and importance using a few use-case scenarios and provide the design principles behind, and an architecture of a co-operating system or CoS that can serve as an example of this new paradigm.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
During the recent years human society evolved from the “industrial society age” and transitioned into the “knowledge society age”. This means that knowledge media support migrated from “pen and paper” to computer-based Information Systems. Due to this fact Ergonomics has assumed an increasing importance, as a science/technology that deals with the problem of adapting the work to the man, namely in terms of Usability. This paper presents some relevant Ergonomics, Usability and User-centred design concepts regarding Information Systems.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais
Resumo:
The antigenic and allergenic chemical analysis of spore and mycelia extracts of Pisolithus tinctorius was carried out. The spores were collected from basidiocarps in plantations of Eucalyptus spp and the mycelia from culture in MNM medium. With basis on the fungus growth curve, the mycelia masses were obtained after 10, 20, 30, and 40 days of incubation, which correspond, respectively, to the beginning, middle and end of the log phase, and beginning of the decline phase. The mycelia masses, together with the spores, were submitted to the action of three extractors (Coca, Tris-HCl, and ammonium bicarbonate). The contents of carbohydrates and proteins were determined. The SDS-PAGE electrophoretical analysis revealed separate fractions in these extracts, besides common fractions, in function of cultivation time and extraction methods. The selected extracts for the allergic tests were the ones with the highest number of fractions. The prick-tests were conducted in 374 patients rural workers, eucalyptus plantation works and college students. The positivity to the "prick test" with the antigenic extract of P. tinctorius was, respectively, 3.78%, 28.20% and 6.40%. Most prick-test positive patients (82.75%) also presented symptoms of respiratory allergy (asthma and rhinitis). There was no reactivity difference when the spore and mycelia extracts were employed. The analysis of the positive patients sera revealed the presence of IgE specific to the P. tinctorius antigens. Since Pisolithus tinctorius is found as mycorrhyza of Eucalyptus spp, and this plant is used in reforestation in most countries, the importance of that fungus should be regarded as a possible cause of respiratory allergies, especially in occupationally exposed workers
Resumo:
Recent Advances in Mechanics and Materials in Design
Resumo:
Background: Genetic changes in influenza surface and internal genes can alter viral fitness and virulence. Mutation trend analysis and antiviral drug susceptibility profiling of A(H1N1)pdm09 viruses is essential for risk assessment of emergent strains and disease management. Objective: To profile genomic signatures and antiviral drug resistance of A(H1N1)pdm09 viruses and to discuss the potential role of mutated residues in human host adaptation and virulence. Study design: A(H1N1)pdm09 viruses circulating in Portugal during pandemic and post-pandemic periods and 2009/2010 season. Viruses were isolated in MDCK-SIAT1 cell culture and subjected to mutation analysis of surface and internal proteins, and to antiviral drug susceptibility profiling. Results: The A(H1N1)pdm09 strains circulating during the epidemic period in Portugal were resistant to amantadine. The majority of the strains were found to be susceptible to oseltamivir and zanamivir, with five outliers to neuraminidase inhibitors (NAIs) identified. Specific mutation patterns were detected within the functional domains of internal proteins PB2, PB1, PA, NP, NS1, M1 and NS2/NEP, which were common to all isolates and also some cluster-specific. Discussion: Modification of viral genome transcription, replication and apoptosis kinetics, changes in antigenicity and antiviral drug susceptibility are known determinants of virulence. We report several point mutations with putative roles in viral fitness and virulence, and discuss their potential to result in more virulent phenotypes. Monitoring of specific mutations and genetic patterns in influenza viral genes is essential for risk assessing emergent strains, disease epidemiology and public health implications.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
This paper aims to analyse the birth and evolution of design with concerns over sustainability, in the context of social and civilizational changes experienced since the industrial revolution, with particular focus since the post-war period and in the context of sustainable development. It will examine several factors that influenced this design approach and that drove its evolution through different stages of maturity and complexity. It will analyse the various forms of design with environmental concerns, as well as the inclusion of other criteria in the context of sustainability, namely social ones. The aim is to settle knowledge that can allow us to draw some lessons to meet the challenges we face today.