904 resultados para load compensation
Resumo:
A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.
Resumo:
Environmental aspects have been acknowledged as an important issue in decision making at any field during the last two decades. There are several available methodologies able to assess the environmental burden, among which the Ecological Footprint has been widely used due to its easy-to-understand final indicator. However, its theoretical base has been target of some criticisms about the inadequate representation of the sustainability concept by its final indicator. In a parallel way, efforts have been made to use the theoretical strength of the Emergy Accounting to obtain an index similar to that supplied by the Ecological Footprint. Focusing on these aspects, this work assesses the support area (SA) index for Brazilian sugarcane and American corn crop through four different approaches: Embodied Energy Analysis (SA(EE)), Ecological Footprint (SA(EF)), Renewable Empower Density (SA(R)), and Emergy Net Primary Productivity (SA(NPP)). Results indicate that the load on environment varies accordingly to the methodology considered for its calculation, in which emergy approach showed the higher values. Focusing on crops comparison, the load by producing both crops are similar with an average of 0.04 ha obtained by SA(EE), 1.86 ha by SA(EF), 4.24 ha by SA(R), and 4.32 ha by SA(NPP). Discussion indicates that support area calculated using Emergy Accounting is more eligible to represent the load on the environment due to its global scale view. Nevertheless, each methodology has its contribution depending of the study objectives, but it is important to consider the real meaning and the scope of each one. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among all predictive maintenance techniques the oil analysis and vibration analysis are the most important for monitoring some mechanical systems. The integration of these techniques has potential to improve industrial maintenance practices and provide a better economic gain for industries. To study the integration of these two techniques, a test rig was set up to obtain an extreme working condition for the worm reducer used in this paper. The test rig was composed by a motor connected to a reducer through a flexible coupling and with an unbalanced load. The analysis of the results carried out by using a sample of the oil recommended by the manufacturer in extreme conditions, and using liquid contaminant is presented. From the results it was observed that if there is an abnormal instantaneous load in a system, the subsequent vibration analysis may not perceive what occurred if there was no permanent damage, which is not the case with the lubricant analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the survival rate, success rate, load to fracture, and finite element analysis (FEA) of maxillary central incisors and canines restored using ceramic veneers and varying preparation designs.Methods and Materials: Thirty human maxillary central incisors and 30 canines were allocated to the following four groups (n=15) based on the preparation design and type of tooth: Gr1 = central incisor with a conservative preparation; Gr2 = central incisor with a conventional preparation with palatal chamfer; Gr3 = canine with a conservative preparation; Gr4 = canine with a conventional preparation with palatal chamfer. Ceramic veneers (lithium disilicate) were fabricated and adhesively cemented (Variolink Veneer). The specimens were subjected to 4 x 106 mechanical cycles and evaluated at every 500,000 cycles to detect failures. Specimens that survived were subjected to a load to fracture test. Bidimensional models were modeled (Rhinoceros 4.0) and evaluated (MSC.Patrans 2005r2 and MSC.Marc 2005r2) on the basis of their maximum principal stress (MPS) values. Survival rate values were analyzed using the Kaplan-Meier test (alpha = 0.05) and load to fracture values were analyzed using the Student t-test (alpha = 0.05).Results: All groups showed 100% survival rates. The Student t-test did not show any difference between the groups for load to fracture. FEA showed higher MPS values in the specimens restored using veneers with conventional preparation design with palatal chamfer.Conclusion: Preparation design did not affect the fracture load of canines and central incisors, but the veneers with conventional preparation design with palatal chamfer exhibited a tendency to generate higher MPS values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS