940 resultados para life cycle assessment bio-fuel cell biomass waste LCA biowaste valorization
Resumo:
The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.
Resumo:
Questa tesi si propone di fornire un approccio multidisciplinare per la valutazione delle prestazioni di una tipologia di intervento sostenibile che consiste in un telaio in calcestruzzo armato (RCFramed skin) per la ristrutturazione integrata di edifici esistenti. Viene fornita una descrizione preliminare di tale tecnologia, con particolare attenzione al miglioramento simultaneo delle prestazioni strutturali (sismiche), non strutturali (energetiche) e alle questioni relative alla limitazione dell'invasività e dell'interruzione dell'uso della costruzione. La valutazione delle prestazioni dell'edificio nelle configurazioni pre e post intervento è effettuata, principalmente in termini di capacità sismica, ma anche del comportamento termo-igrometrico. In particolare, i benefici ottenuti sia dal punto di vista strutturale che energetico sono valutati con riferimento a tre diverse città appartenenti a tre differenti zone sismiche e climatiche. La fattibilità e la sostenibilità dell'intervento di adeguamento proposto sono indagate attraverso una valutazione LCA(Life Cycle Assessment) per l'impatto ambientale e LCC(Life Cycle Cost) per l’analisi economica. Infine, viene proposto un metodo per facilitare la selezione della soluzione di intervento ottimale per ogni sito, combinando l'aspetto strutturale con quello energetico, di impatto ambientale ed economico.
Resumo:
Microbial Fuel Cells (MFC) technology finds space as a promising technology as a green alternative power-generating device, by the possibility to convert organic matter directly into electricity by microbially catalysed reactions, especially for the potential of the simultaneous treatment of wastewaters. Despite the studies that were carried out over the decades, MFCs still provide insufficient power and current densities in order to be commercially attractive in the energy market. Scientific community today pursues two main strategies in order to increase the overall performance output of the MFC. The first is to support the cells with an external supercapacitor (SC), which is able to accept and deliver charge much faster than normal capacitors, thanks to the use of an electrostatic double-layer capacitance, in combination with pseudocapacitance. The second is to implement directly the SC into the MFC, by using carbon electrodes with high surface area, similar to the SC. Both strategies are eventually supported by the use of charge boosters, respect to the application of the MFC. Galvanostatic measures for the MFC and SCs are performed at different currents, alone and by integration of both devices. The SCs used have a capacitance respectively of 1F, 3F and 6F. Subsequently, a stack of MFCs is assembled and paired to a 3F SC, in order to power an ambient diffuser, able to spray at intervals with a can and a controller. In conclusion, the use of a SC in parallel to the MFCs increases the overall performance of the system. The SC remove the discharge current limit of the MFC and increases the energy and power delivered by the system, allowing it to power for a certain time the ambient diffuser successfully. The key factor highlighted by the final experiment was the insufficient charging time of the SC, resulting finally in a voltage that is inadequate to power the device. Further studies are therefore necessary to improve the performance of the MFCs.
Resumo:
The present work describes the different stages of design, implementation, and validation procedures for an interleaved DC-DC boost converter intended for the 2022 Futura, a fuel cell-powered racing catamaran developed by the UniBoAT team. The main goal of the entire design has been the significant reduction of the weight of the converter by removing heat sinks and reducing component size while increasing its efficiency by adopting high-end power switches and the interleaved architecture operated with a synchronous control strategy. The obtained converter has been integrated into the structure containing the fuel cell stack obtaining a fully integrated system. The realized device has been based on an interleaved architecture with six phases controlled digitally through the average current mode control. The design has been validated through simulations carried out using the software LT-Spice, whereas experimental validations have been performed by means of laboratory bench tests and on-field tests. Detailed thermal and efficiency analyses are provided with the bench tests under the two synchronous and non-synchronous operating modes and with the adoption of the phase shedding technique. The prototype implementation and its performance in real operating conditions are also discussed. Eventually, it is underlined as the designed converter can be used in other applications requiring a voltage-controlled boost converter.
Resumo:
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper reviews a wide range of tools for comprehensive sustainability assessments at whole tourism destinations, covering socio-cultural, economic and environmental issues. It considers their strengths, weaknesses and site specific applicability. It is intended to facilitate their selection (and combination where necessary). Tools covered include Sustainability Indicators, Environmental Impact Assessment, Life Cycle Assessment, Environmental Audits, Ecological Footprints, Multi-Criteria Analysis and Adaptive Environmental Assessment. Guidelines for evaluating their suitability for specific sites and situations are given as well as examples of their use.
Resumo:
Although the social dimension is often cited as the third leg of triple bottom line sustainability, there is at present general agreement on the difficulty of saying just what social sustainability is and how it can be related to enivironmental sustainability. This paper proposes that a sociotechnical understanding of the relationship beween human behaviour and technical developments provides a way of making the social dimension accessible to engineers, designers and developers. We draw on early work in master planned urban developments to show how a sociotechnical model, married to a life cycle assessment approach can help us understand and design for effective and efficient implementation of sustainability systems
Resumo:
Dissertação de natureza científica para obtenção do grau de mestre em Engenharia Civil
Resumo:
The remediation of contaminated sites supports the goal of sustainable development but may also have environmental impacts at a local, regional and global scale. Life cycle assessment (LCA) has increasingly been used in order to support site remediation decision-making. This review article discusses existing LCA methods and proposed models focusing on critical decisions and assumptions of the LCA application to site remediation activities. It is concluded that LCA has limitations as an adequate holistic decisionmaking tool since spatial and temporal differentiation of non-global impacts assessment is a major hurdle in site remediation LCA. Moreover, a consequential LCA perspective should be adopted when the different remediation services to be compared generate different site’s physical states, displacing alternative post-remediation scenarios. The environmental effects of the post-remediation stage of the site is generally disregarded in the past site remediation LCA studies and such exclusion may produce misleading conclusions and misdirected decision-making. In addition, clear guidance accepted by all stakeholders on remediation capital equipment exclusion and on dealing with multifunctional processes should be developed for site remediation LCA applications.
Resumo:
A crescente preocupação que envolve as questões ambientais a nível mundial, cada vez mais agravadas pelo comportamento irresponsável do Homem, conduziu à criação de métodos de avaliação dos impactes ambientais provocados por produtos e sistemas. Sendo o sector da construção responsável por grande parte desses impactes, é evidente a necessidade de aplicação de medidas que visem mitigar ou, no mínimo, reduzir até valores aceitáveis, essas agressões ao meio ambiente. Nesse âmbito, é natural que tenha surgido a ideia de aplicar uma metodologia tão precisa e rigorosa como a LCA ao sector da construção. No entanto, nos dias de hoje, as preocupações alargaram-se às vertentes social e económica que, juntamente com a vertente ambiental, formam o triângulo de equilíbrio do desenvolvimento sustentável. É precisamente essa avaliação tripartida que esta Dissertação pretende abordar, tentando aprofundar conhecimentos e fornecer alternativas, através da análise crítica, que possam contribuir para a melhoria contínua desta metodologia.
Resumo:
The intent of this dissertation is to review relevant existing management systems and chemical industry initiatives to identify synergies, overlaps and gaps with Sustainability best practices, to map the barriers to the incorporation of Sustainability and formulate recommendations to facilitate execution of Sustainability practices within existing management systems. A chemical industry Sustainability survey was conducted through APEQ, the Portuguese association of chemical companies, which constitutes the first baseline on the topic for this national industry association. The commonly used international standards and the Responsible Care® (RC) initiative were cross-referenced against the United Nations Global Compact Assessment Tool. Guidance on how to incorporate Sustainability into a company‘s modus operandi was collapsed into Sustainability Playbooks. The survey revealed that 73% of the APEQ member companies that participated in the survey have a Sustainability Plan. Both large and small/medium APEQ member companies see the market not willing to pay extra for ‗greener‘ products as one of the main barriers. APEQ large enterprise see complexity of implementation and low return on investment as the other most significant barriers while small/medium enterprise respond that the difficulty to predict customer sustainability needs is the other most significant barrier. Amongst many other insights from this survey reported to APEQ, Life Cycle Assessment practices were found to have a low level of implementation and were also considered of low importance, thus identifying a very important opportunity in Sustainability practices to be addressed by APEQ. Two hundred and seventy three assessment points from United Nations Global Compact Assessment Tool plus five additional items were cross-referenced with international standard requirements. With the authorization of the intellectual property owners, the United Nations Global Compact Assessment Tool was modified to introduce actionable recommendations for each gap identified by management standard. This tool was automated to output specific recommendations for 63 possible combinations after simply selecting from a list of commonly used management standards and the RC initiative. Finally this modified tool was introduced into Playbooks for Incorporation of Sustainability at two levels: a ―Get Started Playbook‖ for beginners or small/medium size enterprise and an ―Advanced Playbook‖ as a second advancement stage or for large enterprise.
Resumo:
A indústria da construção é um setor com grande impacto na economia, no Produto Interno Bruto (PIB) e ainda em postos de trabalho diretos e indiretos. No entanto, é um dos setores com maior impacte ambiental. Com a crise económica e financeira que o país atravessa, este setor foi um dos mais afetados, contribuindo para o aumento do desemprego visto tratar-se do setor com maior taxa de empregabilidade. Concomitantemente, ocorre saturação do mercado com a construção nova e desertificação dos centros urbanos com a degradação das habitações. Assim, como impulsionador da economia, surge a aposta na reabilitação do parque edificado que, com a legislação em vigor e com os incentivos dados pela tutela tem tudo para impulsionar o setor. Sabendo que a indústria da construção é um dos setores com maiores impactes ambientais, faz todo o sentido reabilitar-se de uma forma mais sustentável. Aplicando os princípios da sustentabilidade a todo o ciclo de vida do edifício, conseguimos reduzir os recursos na fase de construção (resíduos de construção) e na fase de exploração (consumo de energia e de água). Podemos ainda reduzir os custos de energia para climatização ao termos em conta a orientação do edifício e a envolvente, os recursos naturais e aplicando tecnologias solares passivas. Assim, ao aplicarmos os princípios da construção sustentável na reabilitação urbana podemos diminuir os impactes ambientais, a produção de CO2, as emissões de gases com efeito de estufa, os resíduos de construção e a área impermeabilizada.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica