825 resultados para learning with errors
Resumo:
[EN]One of the main issues of the current education system is the lack of student motivation. This aspect together with the permanent change that the Information and Communications Technologies involve represents a major challenge for the teacher: to continuously update contents and to keep awake the student’s interest. A tremendously useful tool in classrooms consists on the integration of projects with participative and collaborative dynamics, where the teacher acts mainly as a guidance to the student activity instead of being a mere knowledge and evaluation transmitter. As a specific example of project based learning, the EDUROVs project consists on building an economic underwater robot using low cost materials, but allowing the integration and programming of many accessories and sensors with minimum budget using opensource hardware and software.
Resumo:
In CMS è stato lanciato un progetto di Data Analytics e, all’interno di esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per affrontare questa sfida.
Resumo:
There is a growing demand for better understanding of the link between research, policy and practice in development. This article provides findings from a study that aimed to gain insights into how researchers engage with their non-academic partners. It draws on experiences from the National Centre of Competence in Research North-South programme, a development research network of Swiss, African, Asian and Latin American institutions. Conceptually, this study is concerned with research effectiveness as a means to identify knowledge useful for society. Research can be improved and adapted when monitoring the effects of interactions between researchers and non-academic partners. Therefore, a monitoring and learning approach was chosen. This study reveals researchers' strategies in engaging with non-academic partners and points to framing conditions considered decisive for soccessful interactions. It concludes that reserachrs need to systematically analyse the socio-political context in which they intervene. By providing insights from the ground and reflecting on them in the light of the latest theoretical concepts, this article contributes to the emerging literature founded on practice-based experience.
Resumo:
This publication offers concrete suggestions for implementing an integrative and learning-oriented approach to agricultural extension with the goal of fostering sustainable development. It targets governmental and non-governmental organisations, development agencies, and extension staff working in the field of rural development. The book looks into the conditions and trends that influence extension today, and outlines new challenges and necessary adaptations. It offers a basic reflection on the goals, the criteria for success and the form of a state-of-the-art approach to extension. The core of the book consists of a presentation of Learning for Sustainability (LforS), an example of an integrative, learning-oriented approach that is based on three crucial elements: stakeholder dialogue, knowledge management, and organizational development. Awareness raising and capacity building, social mobilization, and monitoring & evaluation are additional building blocks. The structure and organisation of the LforS approach as well as a selection of appropriate methods and tools are presented. The authors also address key aspects of developing and managing a learning-oriented extension approach. The book illustrates how LforS can be implemented by presenting two case studies, one from Madagascar and one from Mongolia. It addresses conceptual questions and at the same time it is practice-oriented. In contrast to other extension approaches, LforS does not limit its focus to production-related aspects and the development of value chains: it also addresses livelihood issues in a broad sense. With its focus on learning processes LforS seeks to create a better understanding of the links between different spheres and different levels of decision-making; it also seeks to foster integration of the different actors’ perspectives.
Resumo:
Those with learning disabilities (LDs) can be characterized as a minority group, and like most groups of minorities they face a distinct stigma by the larger population. While there iscurrently a lack of research in understanding LD stigma, it has become increasingly important given the push for inclusive classrooms settings. In this study it was hypothesized that regardlessof a participants’ gender, when participants were given a hypothetical description of a person that included information indicating that the individual has a LD, the participants would rate that individual less favorably. Results were consistent with the hypothesis. Participants perceived the hypothetical LD individual as being less attractive, less successful, less emotionally stable,and more open to new experiences when compared to those participants who were given the non-LD description. These results show a level of negative bias in our population towards those with LDs. It is hoped that this research will help address the goal of inclusion and equality for those with LDs and aid in finding ways to identify, address, and attenuate these stigmatizations within all aspects of our society.
Resumo:
Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT-but not in placebo-condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.
Resumo:
In chronic haemodialysis patients, anaemia is a frequent finding associated with high therapeutic costs and further expenses resulting from serial laboratory measurements. HemoHue HH1, HemoHue Ltd, is a novel tool consisting of a visual scale for the noninvasive assessment of anaemia by matching the coloration of the conjunctiva with a calibrated hue scale. The aim of the study was to investigate the usefulness of HemoHue in estimating individual haemoglobin concentrations and binary treatment outcomes in haemodialysis patients. A prospective blinded study with 80 hemodialysis patients comparing the visual haemoglobin assessment with the standard laboratory measurement was performed. Each patient's haemoglobin concentration was estimated by seven different medical and nonmedical observers with variable degrees of clinical experience on two different occasions. The estimated population mean was close to the measured one (11.06 ± 1.67 versus 11.32 ± 1.23 g/dL, P < 0.0005). A learning effect could be detected. Relative errors in individual estimates reached, however, up to 50%. Insufficient performance in predicting binary outcomes (ROC AUC: 0.72 to 0.78) and poor interrater reliability (Kappa < 0.6) further characterised this method.
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.
Resumo:
Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.
Resumo:
We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).