983 resultados para iodometric titration
Resumo:
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Resumo:
We prepared and investigated oligonucleotide duplexes of the sequence d(GATGAC(X)(n)GCTAG)d(CTAGC(Y)(n)GTCATC), in which X and Y designate biphenyl- (bph) and pentafluorobiphenyl- ((5F)bph) C-nucleotides, respectively, and n varies from 0-4. These hydrophobic base substitutes are expected to adopt a zipperlike, interstrand stacking motif, in which not only bph/bph or (5F)bph/(5F)bph homo pairs, but also (5F)bph/bph mixed pairs can be formed. By performing UV-melting curve analysis we found that incorporation of a single (5F)bph/(5F)bph pair leads to a duplex that is essentially as stable as the unmodified duplex (n=0), and 2.4 K more stable than the duplex with the nonfluorinated bph/bph pair. The T(m) of the mixed bph/(5F)bph pair was in between the T(m) values of the respective homo pairs. Additional, unnatural aromatic pairs increased the T(m) by +3.0-4.4 K/couple, irrespective of the nature of the aromatic residue. A thermodynamic analysis using isothermal titration calorimetry (ITC) of a series of duplexes with n=3 revealed lower (less negative) duplex formation enthalpies (DeltaH) in the (5F)bph/(5F)bph case than in the bph/bph case, and confirmed the higher thermodynamic stability (DeltaG) of the fluorinated duplex, suggesting it to be of entropic origin. Our data are compatible with a model in which the stacking of (5F)bph versus bph is dominated by dehydration of the aromatic units upon duplex formation. They do not support a model in which van der Waals dispersive forces (induced dipoles) or electrostatic (quadrupole) interactions play a dominant role
Resumo:
Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level.
Resumo:
Background Tumor necrosis factor (TNF) inhibition is central to the therapy of inflammatory bowel diseases (IBD). However, loss of response (LOR) is frequent and additional tests to help decision making with costly anti-TNF Therapy are needed. Methods Consecutive IBD Patients receiving anti-TNF therapy (Infliximab (IFX) or Adalimumab (after IFX LOR) from Bern University Hospital were identified and followed prospectively. Patient whole blood was stimulated with a dose-titration of two triggers of TLR receptors human: TNF and LPS. Median fluorescence intensity of CD62L on the surface of granulocytes was quantified by surface staining with specific antibodies (CD33, CD62L) and flow cytometry and logistic curves to these data permits the calculation of EC50 or the half maximal effective concentration TNF concentration to induce shedding [1]. A shift in the concentration were CD62L shedding occurred was seen before and after the anti-TNF agent administraion which permits to predict the response to the drug. This predicted response was correlated to the clinical evolution of the patients in order to analyze the ability of this test to identify LOR to IFX. Results We collected prospective clinical data and blood samples, before and after anti-TNF agent administration, on 33 IBD patients, 25 Crohn's disease and 8 ulcerative colitis patients (45% females) between June 2012 and November 2013. The assay showed a functional blockade of IFX (PFR) for 22 patients (17 CD and 5 UC) whereas 11 (8 CD and 3 UC) had no functional response (NR) to IFX. Clinical characteristics (e.g. diagnosis, disease location, smoking status, BMI and number of infusions) were no significantly different between predicted PFR and NR. Among the 22 Patients with PRF, only 1 patient was a clinical non responder (LOR to IFX), based on clinical prospective evaluation by IBD gastroenterologists (PJ, AM), and among the 11 predicted NR, 3 had no clinical LOR. Sensitivity of this test was 95% and specificity 73% and AUC adjusted for age and gender was 0.81 (Figure 1). During follow up (median 10 mo, 3–15) 8 “hard” outcomes occured (3 medic. flares, 4 resections and 1 new fistula) 2 in the PFR and 6 in the NR group (25% vs. 75%; p < 0.01). Correlation with clinical response is presented in Figure 2. Figure 1. Figure 2. Correlation clinical response - log EC50 changes: 1 No, 2 partial, 3 complete clinical response. Conclusion CD62L (L-Selectin) shedding is the first validated test of functional blockade of TNF alpha in anti-TNF treated IBD patients and will be a useful tool to guide medical decision on the use of anti-TNF agents. Comparative studies with ATI and trough level of IFX are ongoing. 1. Nicola Patuto, Emma Slack, Frank Seibold and Andrew J. Macpherson, (2011), Quantitating Anti-TNF Functionality to Inform Dosing and Choice of Therapy, Gastroenterology, 140 (5, Suppl. I), S689.
Resumo:
10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.
Resumo:
Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric alphaN(7)-, betaN(7)-, alphaN(9)- and betaN(9)-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 x 10(6) and 1.3 x 10(8) M(-1). The following relative order in Z x X-Y base-triple stabilities was found: Z = alphaN(7)ap: T-A > A-T> C-G approximately G-C; Z = betaN(7)ap: A-T > C-G > G-C > T-A; Z = alphaN(9)ap: A-T = G-C > T-A > C-G; and Z = betaN(9)ap: G-C > A-T > C-G > T-A
Resumo:
The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.
Resumo:
BACKGROUND 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.
Resumo:
PRINCIPLES We aimed to evaluate the efficacy of, and treatment satisfaction with, insulin glargine administered with SoloSTAR® or ClikSTAR® pens in patients with type 2 diabetes mellitus managed by primary care physicians in Switzerland. METHODS A total of 327 patients with inadequately controlled type 2 diabetes were enrolled by 72 physicians in this prospective observational study, which aimed to evaluate the efficacy of a 6-month course of insulin glargine therapy measured as development of glycaemic control (glycosylated haemoglobin [HbA1c] and fasting plasma glucose [FPG]) and weight change. We also assessed preference for reusable or disposable pens, and treatment satisfaction. RESULTS After 6 months, the mean daily dose of insulin glargine was 27.7±14.3 U, and dose titration was completed in 228 (72.4%) patients. Mean HbA1c decreased from 8.9%±1.6% (n=327) to 7.3%±1.0% (n=315) (p<0.0001), and 138 (43.8%) patients achieved an HbA1c≤7.0%. Mean FPG decreased from 10.9±4.5 to 7.3±1.8 mmol/l (p<0.0001). Mean body weight did not change (85.4±17.2 kg vs 85.0±16.5 kg; p=0.11). Patients' preference was in favour of the disposable SoloStar® pen (80%), as compared with the reusable ClickStar® pen (20%). Overall, 92.6% of physicians and 96.3% of patients were satisfied or very satisfied with the insulin glargine therapy. CONCLUSIONS In patients with type 2 diabetes insulin glargine administered by SoloSTAR® or ClikSTAR® pens, education on insulin injection and on self-management of diabetes was associated with clinically meaningful improvements in HbA1c and FPG without a mean collective weight gain. The vast majority of both patients and primary care physicians were satisfied with the treatment intensification.
Resumo:
Current shortcomings in cancer therapy require the generation of new, broadly applicable, potent, targeted treatments. Here, an adenovirus is engineered to replicate specifically in cells with active human telomerase promotion using a modified hTERT promoter, fused to a CMV promoter element. The virus was also modified to contain a visible reporter transgene, GFP. The virus, Ad/hTC-GFP-E1 was characterized in vitro and demonstrated tumor specific activity both by dose and over time course experiments in a variety of cell lines. In vivo, Ad/hTC-GFP-E1 was affected at suppressing tumor growth and providing a survival benefit without causing any measurable toxicity. To increase the host range of the vector, the fiber region was modified to contain an RGD-motif. The vector, AdRGD/hTC-GFP-E1, was recharacterized in vitro, revealing heightened levels of infectivity and toxicity however maintaining a therapeutic window between cancer and normal cell toxicity. AdRGD/hTC-GFP-E1 was administered in vivo by limb perfusion and was observed to be tumor specific both in expression and replication. To further enhance the efficacy of viral vectors in lung delivery, asthma medications were investigated for their abilities to enhance transgene delivery and expression. A combination of bronchodilators, mast cell inhibitors, and mucolytic agents was devised which demonstrated fold increases in expression in immunocompetent mouse lungs as single agents and more homogenous, intense levels of expression when done in combination of all agents. To characterize the methods in which some cancers are resistant or may become resistant to oncolytic treatments, several small molecule inhibitors of metabolic pathways were applied in combination with oncolytic infection in vitro. SP600125 and PD 98059, respective JNK and ERK inhibitors, successfully suppressed oncolytic toxicity, however did not affect infectivity or transgene expression of Ad/hTC-GFP-E1. JNK and ERK inhibition did significantly suppress viral replication, however, as analyzed by lysate transfer and titration assays. In contrast, SB 203580, an inhibitor for p38, did not demonstrate any protective effects with infected cells. Flow cytometric analysis indicated a possible correlation with G1 arrest and suppressed viral production, however more compounds must be investigated to clarify this observation. ^
Resumo:
The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^
Resumo:
Membrane proteins are critical to every aspect of cell physiology, with their association mediating important biological functions. The transmembrane and cytoplasmic domains are known to be important for their association. In order to characterize their role in detail, we have applied different biophysical techniques in detergent micelles to two model systems. The first study involves FcRγ, a single transmembrane domain protein existing as a disulfide linked homodimer. We investigated the role of a conserved transmembrane polar residue and the cytoplasmic tail in FcRγ homo-interactions. Our results by various biophysical techniques including SDS-PAGE, circular dichroism and sedimentation equilibrium in detergent micelles indicate importance of both the transmembrane polar residue and cytoplasmic tail in maintaining proper conformation for FcRγ homo-interactions. A contrasting second study was on L-selectin, another single transmembrane domain protein with a large extracellular domain and a short cytoplasmic tail. Previous cross-linking experiments indicate its possible dimerization. However, the purified fragment of L-selectin and corresponding mutants did not dimerize when analyzed by TOXCAT assay, sedimentation equilibrium and fluorescence resonance energy transfer. It was likely that the presence of juxtamembrane positively charged residues led to decreased migrational rates in SDS PAGE. In conclusion, complementary biophysical techniques should be used with care when studying membrane protein association in detergent micelles. As an extension to our study on L-selectin, we also investigated its interaction with Calmodulin (CaM) in detergent micelles. CaM was found to interact with different detergents. We applied fluorescence and NMR spectroscopy to characterize the interaction of both the apo and Ca 2+ bound form of CaM, with commonly used detergents, below and above their respective critical micelle concentrations. The interaction of apo-CaM with detergents was found to vary with the nature of the detergent head group, whereas Ca2+-CaM interacted with individual detergent molecules irrespective of the nature of their head group. NMR titration experiments of CaM with detergents indicated involvement of specific residues from the N-lobe, linker and C-lobe of CaM. ^
Resumo:
Detection of malarial sporozoites by a double antibody sandwich enzyme linked immunosorbent assay (ELISA) is described. This investigation utilized the Anopheles stephensi-Plasmodium berghei malaria model for the generation of sporozoites. Anti-sporozoite antibody was obtained from the sera of rats which had been bitten by An. stephensi with salivary gland sporozoites. Mosquitoes were irradiated prior to feeding on the rats to render the sporozoites non-viable.^ The assay employed microtiter plates coated with their rat anti-sporozoite antiserum or rat anti-sporozoite IgG. Intact and sonicated sporozoites were used as antigens. Initially, sporozoites were detected by an ELISA using staphylococcal protein A conjugated with alkaline phosphatase. Sporozoites were also detected using alkaline phosphatase or horseradish peroxidase conjugated to anti-sporozoite IgG. Best results were obtained using the alkaline phosphatase conjugate.^ This investigation included the titration of antigen, coating antibody and labelled antibody as well as studies of various incubation times. A radioimmunoassay (RIA) was also developed and compared with the ELISA for detecting sporozoites. Finally, the detection of a single infected mosquito in pools of 5 to 10 whole, uninfested ones was studied using both ELISA and RIA.^ Sonicated sporozoites were more readily detected than intact sporozoites. The lower limit of detection was approximately 500 sporozoites per ml. Results using ELISA or RIA were similar. The ability of the ELISA to detect a single infected mosquito in a pool of uninfected ones indicates that this technique has potential use in entomological field studies which aim at determining the vector status of anopheline mosquitoes. The potential of the ELISA for identifying sporozoites of different species of malaria is discussed. ^
Resumo:
Role of Neurogranin in the regulation of calcium binding to Calmodulin Anuja Chandrasekar, B.S Advisor: M. Neal Waxham, Ph.D The overall goal of my project was to gain a quantitative understanding of how the interaction between two proteins neurogranin (RC3) and calmodulin (CaM) alters a fundamental property of CaM. CaM, has been extensively studied for more than four decades due to its seminal role in almost all biological functions as a calcium signal transducer. Calcium signals in cardiac and neuronal cells are exquisitely precise and enable activation of some processes while down-regulating others. CaM, with its four calcium binding sites, serves as a central component of calcium signaling in these cells. It is aided in this role as a regulatory hub that differentially activates targets in response to a calcium flux by proteins that alter its calcium binding properties. Neurogranin, also known as RC3, is a member of a family of small neuronal IQ (SNIQ) domain proteins that was originally thought to play a ‘capacitive’ role by sequestering CaM until a calcium influx of sufficient intensity arrived. However, based on earlier work in our lab on neurogranin, we believe that this protein plays a more nuanced role in neurons than simply acting as a CaM buffer. We believe that neurogranin is one of the proteins which, by altering the kinetics of calcium binding allow CaM to decode a variety of signals with fine precision. To quantify the interaction between CaM, neurogranin and calcium, I used biophysical techniques and computational simulations. From my results, I conclude that neurogranin finely regulates the proportion of calcium-saturated CaM and thereby directs CaM’s target specificity.
Resumo:
Contraction of cardiac muscle is regulated through the Ca2+ dependent protein-protein interactions of the troponin complex (Tn). The critical role cardiac troponin C (cTnC) plays as the Ca2+ receptor in this complex makes it an attractive target for positive inotropic compounds. In this study, the ten Met methyl groups in cTnC, [98% 13C ϵ]-Met cTnC, are used as structural markers to monitor conformational changes in cTnC and identify sites of interaction between cTnC and cardiac troponin I (cTnI) responsible for the Ca2+ dependent interactions. In addition the structural consequences that a number of Ca2+-sensitizing compounds have on free cTnC and the cTnC·cTnI complex were characterized. Using heteronuclear NMR experiments and monitoring chemical shift changes in the ten Met methyl 1H-13C correlations in 3Ca2+ cTnC when bound to cTnI revealed an anti-parallel arrangement for the two proteins such that the N-domain of cTnI interacts with the C-domain of cTnC. The large chemical shifts in Mets-81, -120, and -157 identified points of contact between the proteins that include the C-domain hydrophobic surface in cTnC and the A, B, and D helical interface located in the regulatory N-domain of cTnC. TnI association [cTnI(33–80), cTnI(86–211), or cTnI(33–211)] was found also to dramatically reduce flexibility in the D/E central linker of cTnC as monitored by line broadening in the Met 1H- 13C correlations of cTnC induced by a nitroxide spin label, MTSSL, covalently attached to cTnC at Cys 84. TnI association resulted in an extended cTnC that is unlike the compact structure observed for free cTnC. The Met 1H-13C correlations also allowed the binding characteristics of bepridil, TFP, levosimendan, and EMD 57033 to the apo, 2Ca2+, and Ca2+ saturated forms of cTnC to be determined. In addition, the location of drug binding on the 3Ca2+cTnC·cTnI complex was identified for bepridil and TFP. Use of a novel spin-labeled phenothiazine, and detection of isotope filtered NOEs, allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain, and on two hydrophobic surfaces on N-regulatory domain in free 3Ca2+ cTnC. In contrast, only one N-domain drug binding site exists in 3Ca2+ cTnC·cTnI complex. The methyl groups of Met 45, 60 and 80, which are grouped in a hydrophobic patch near site II in cTnC, showed the greatest change upon titration with bepridil or TFP, suggesting that this is a critical site of drug binding in both free cTnC and when associated with cTnI. The strongest NOEs were seen for Met-60 and -80, which are located on helices C and D, respectively, of Ca2+ binding site II. These results support the conclusion that the small hydrophobic patch which includes Met-45, -60, and -80 constitutes a drug binding site, and that binding drugs to this site will lead to an increase in Ca2+ binding affinity of site II while preserving maximal cTnC activity. Thus, the subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds. ^