920 resultados para intelligent vehicle air conditioning
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL algorithm, which uses a combination of standard VRP heuristics, is developed first to solve instances of the VRP. A ML version, which extends the global view of these heuristics, is then created, using variants of the construction and improvement heuristics at each level. Finally some multilevel enhancements are developed. Experimentation is used to find suitable parameter settings and the final version is tested on two well-known VRP benchmark suites. Results comparing both SL and ML algorithms are presented.
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Resumo:
While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC. To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study. It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified. © 2013 The Authors
Resumo:
Previous research on damage detection based on the response of a structure to a moving load has reported decay in accuracy with increasing load speed. Using a 3D vehicle – bridge interaction model, this paper shows that the area under the filtered acceleration response of the bridge increases with increasing damage, even at highway load speeds. Once a datum reading is established, the area under subsequent readings can be monitored and compared with the baseline reading, if an increase is observed it may indicate the presence of damage. The sensitivity of the proposed approach to road roughness and noise is tested in several damage scenarios. The possibility of identifying damage in the bridge by analysing the acceleration response of the vehicle traversing it is also investigated. While vehicle acceleration is shown to be more sensitive to road roughness and noise and therefore less reliable than direct bridge measurements, damage is successfully identified in favourable scenarios.
Resumo:
Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The application of the Radial Basis Function (RBF) Neural Network (NN) to greenhouse inside air temperature modelling has been previously investigated (Ferreira et al., 2000a). In those studies, the inside air temperature is modelled as a function of the inside relative humidity and of the outside temperature and solar radiation. A second-order model structure previously selected (Cunha et al., 1996) in the context of dynamic temperature models identification, is used.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The design and development of the swordfish autonomous surface vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5 m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.