945 resultados para initialization uncertainty
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Recent developments in service-oriented and distributed computing have created exciting opportunities for the integration of models in service chains to create the Model Web. This offers the potential for orchestrating web data and processing services, in complex chains; a flexible approach which exploits the increased access to products and tools, and the scalability offered by the Web. However, the uncertainty inherent in data and models must be quantified and communicated in an interoperable way, in order for its effects to be effectively assessed as errors propagate through complex automated model chains. We describe a proposed set of tools for handling, characterizing and communicating uncertainty in this context, and show how they can be used to 'uncertainty- enable' Web Services in a model chain. An example implementation is presented, which combines environmental and publicly-contributed data to produce estimates of sea-level air pressure, with estimates of uncertainty which incorporate the effects of model approximation as well as the uncertainty inherent in the observational and derived data.
Resumo:
This paper presents a problem structuring methodology to assess real option decisions in the face of unpredictability. Based on principles of robustness analysis and scenario planning, we demonstrate how decision-aiding can facilitate participation in projects setting and achieve effective decision making through the use of real options reasoning. We argue that robustness heuristics developed in earlier studies can be practical proxies for real options performance, hence indicators of efficient flexible planning. The developed framework also highlights how to integrate real options solutions in firms’ strategic plans and operating actions. The use of the methodology in a location decision application is provided for illustration.
Resumo:
Two studies were conducted to examine the impact of subjective uncertainty on conformity to group norms in the attitude-behaviour context. In both studies, subjective uncertainty was manipulated using a deliberative mindset manipulation (McGregor, Zanna, Holmes, & Spencer, 2001). In Study 1 (N = 106), participants were exposed to either an attitude-congruent or an attitude-incongruent in-group norm. In Study 2(N = 83), participants were exposed to either a congruent, incongruent, or an ambiguous in-group norm. Ranges of attitude-behaviour outcomes, including attitude-intention consistency and change in attitude-certainty, were assessed. In both studies, levels of group-normative behaviour varied as a function of uncertainty condition. In Study 1, conformity to group norms, as evidenced by variations in the level of attitude-intention consistency, was observed only in the high uncertainty condition. In Study 2, exposure to an ambiguous norm had different effects for those in the low and die high uncertainty conditions. In the low uncertainty condition, greatest conformity was observed in the attitude-congruent norm condition compared with an attitude-congruent or ambiguous norm. In contrast, individuals in the high uncertainty condition displayed greatest conformity when exposed to either an attitude-congruent or an ambiguous in-group norm. The implications of these results for the role of subjective uncertainty in social influence processes are discussed. © 2007 The British Psychological Society.
Resumo:
With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.